
UNDERSTANDING
DATA COMMUNICATIONS

PROTOCOLS AND SOFTWARE

D R A F T of 23 August 1988

Frank da Cruz Christine Gianone

Publication pending by Digital Press, Bedford, MA. Reproduction prohibited.

Understanding Data Communication Protocols and Software Page 1

PREFACE
This book owes its existence to a course that we developed and taught at Columbia
University in 1987 and 1988. The course, Telecommunications Software, was conducted in
Columbia’s Division of Special Programs, a certificate program for adults. The students
ranged from computer novices to telecommunications managers. Some were proficient
programmers, others had no programming experience at all. Few of the students had an
engineering background. Finding a textbook that presented the ideas of data communica-
tion software and protocols to this mature and diverse audience -- a book that did not talk
down to them, but yet was not too technical -- was a challenge. Early selections were
roundly boo’d. As a result, we began to develop our own notes into something resembling a
text. The result is what you hold in your hand.

The book can be used as a primary or supplementary text in courses in data communica-
tions or networking, either in academic institutions, or in professional development
seminars. Since no particular technical knowledge is required beyond elementary
programming ability in the C language and some high-school algebra, it should be suitable
for use in high school, college, graduate school, and continuing education courses. It can
also be used as a supplementary text in programming or software engineering courses.

Computer professionals who want to teach themselves or experiment with data communica-
tions programming, or who simply want to gain a real understanding of the issues of data
communications, may also benefit from this book, as may programmers who want to learn
about popular protocols from a software point of view. And so might data communications
or programming managers who want a better understanding of what their employees are
up to.

Numerous programming examples in the C language are included, and some in assembly
language as well. But readers and students who are not programmers will still be able to
make use of this book. Exercises are designed around the programs given here, requiring
students to observe, report on, and explain their behavior. Programmers go one step
further, and modify the programs or write new ones.

While existing protocols are described, none are specified or programmed in all their
fullness; that would require a room full of books, preferably in loose-leaf binders for daily
updating. Rather, it is our intention to familiarize readers with the fundamental
principles, issues, and problems of software development and operation in general, and of
data communications software in particular, ranging from PC communication programs to
large-scale packet switched networks. Our central themes are the layering of levels of
communication protocols, and the corresponding modularity of the software that interprets
those protocols. Our goal is to develop sufficient background, tools, and criteria for
evaluation of telecommunication and networking software and protocols in the
ever-changing marketplace.

The computer programs were developed on the IBM PC family and the DEC VAXmate
using Microsoft C and Assembler 5.0. Laboratories containing IBM PCs, ATs, PS/2s,
VAXmates, or compatibles may be adapted for use with this book simply by connecting
adjacent PCs with RS-232 null modem cables, so that each PC (except possibly the ones on
the ends) communicates with two others, through two separate serial communication ports.
This is a cheap networking laboratory indeed!

Page 2 PREFACE

Understanding Data Communication Protocols and Software Page 3

1. INTRODUCTION
Data communication boils down to two independently functioning devices, possibly of
radically different design, speed, capacity, etc, trying to exchange information over a
possibly hostile medium. Conventions, agreements, standards, and protocols are necessary
at all levels:

• electrical

• physical

• timing

• format

• syntax

• semantics

These standards and protocols form building blocks that allow many types of communica-
tion to take place over a wide range of machines in different countries ... a message travels
from one computer to the next over different types of links. Each computer knows how to
talk to its neighbor at a low level, and the "end systems" know how to talk to each other,
through all the intermediate computers, at a higher level.

Ultimately, in many cases, "data" is being transmitted from the keyboard of one user’s
computer to the screen of another’s. But what is this data, and what are the computers?
How does the design of the computer hardware constrain the form of the data and the
design of the software that conveys it from one computer to another?

COMPUTERS, FRONT ENDS, COMMUNICATION PROCESSORS
What is a computer? It is a tool intended to free human beings of certain kinds of repetitive
or exacting work: numerical calculations, information management, accounting, etc.
Computers have had an enormous impact on society -- rooms full of file clerks and typists
have been replaced by rooms full of disk drives and printers; mathemetical tables once
calculated manually by armies of mathematicians; ... blah blah...

With proper programming, computers manipulate information -- often large amounts of it --
without complaint or error, without succumbing to boredom or whimsey ...

We may view a computer as a device that can accept data from an external source, store it,
manipulate it in various ways, and produce results at an external destination, usually for
human consumption. Furthermore, the manipulations may be specified by the user of the
device by means of a "program", a series of instructions for the computer to perform. And
what distinguishes a computer from most other machines is that its function can be
changed simply by having it run a different program.

(Something more formal here... Definition, stored program concept, Turing machine,
Babbate analytical engine, ...)

A modern computer has several aspects that are of particular concern to software:

• CPU - executes instructions, can do only one thing (instruction) at a time. The
part of the CPU that executes instructions is called the instruction decoder.
The CPU also has other parts.

Page 4 INTRODUCTION

• A repertoire of machine instructions (add, move, test, jump, etc).

• Memory - where instructions and data are accessed by CPU. Each memory
location is denoted by an address.

• A program counter (PC), which contains the address of the next instruction to
execute. Also called location counter.

• Registers - where data can be manipulated (arithmetically, etc). Also called
accumulators.

• Virtual memory - address map between program address space & memory
space.

• Memory protection, to protect co-resident processes from each other.

• Priv’d instructions (e.g. to switch processes, do i/o, halt)

• Realtime clock that provides interrupts (for scheduling)

• Interrupts, levels.

• Interrupt controller.

• Peripheral devices, controlled by the computer:

• Input devices (like card readers), for loading instructions and data into
memory.

• Output devices (like printers), for conveying the results of computations.

• Input/Output devices (disks, tapes), for storing information, or moving
high volumes of it quickly to or from memory, or to serve as an extension
of the high-speed internal memory.

• Communication devices: for communicating with a another device that is NOT
controlled by the computer, e.g. person (e.g. through a terminal), or another
computer.

• Device controller, to connect each device to the computer.

Let’s look first at how the computer operates internally. Let’s assume that a program has
been loaded (somehow) into the computer’s memory, at addresses 100 - 114. This program
adds up a list of numbers. When it encounters a negative number, it stops adding and
computes the average. The program is in a hypothetical (but typical) machine language,
but written with alphabetic "mnemonic" codes for readability. The instruction format is
"opcode register, address". In reality, the instructions are stored in the computer’s memory
as ordinary numbers, indistinguishable from data.
Addr Instruction Effect

Understanding Data Communication Protocols and Software Page 5

100 clear 1 Set register 1 to 0, increment PC (accumulator for sum).
101 clear 2 Set register 2 to 0, increment PC (counter).
102 lda 3, 111 Load address 111 into register 3, increment PC.
103 load 4, (3) Load the contents of the address in R3 into R4, incr. PC.
104 bl 4, 109 If contents of R4 < 0, set PC to 109, else increment PC.
105 add 1, (3) Add contents of address in R3 to R1, increment PC.
106 inc 2 Increment R2 (counter) and increment PC.
107 inc 3 Increment R3 (data adress) and increment PC.
108 jump 103 Set PC to 103.
109 div 1, 2 Divide contents of R1 by contents of R2, increment PC.
110 halt Stop execution. The average is left in R1.
111 75 Data.
112 18 Data.
113 164 Data.
114 -1 Data.

Thus, each instruction not only performs the indicated operation, but also specifies what
happens to the program counter when the instruction has completed. This is how the
instructions are executed in sequence, and also how the normal sequence can be broken.

The data and instructions are stored together, in the same memory. There is nothing about
their contents or form that distinguishes them. For instance, the instruction "div 1, 2"
might be identical to the data "164". The only thing that keeps them apart is that the
computer has been instructed (somehow) to begin execution at statement 100, and the
program is written in a way that prevents any of the data from being loaded into the CPU
and executed, i.e. the program counter never points at the data (careless programmers
often find their programs "executing data", with totally unpredictable results).

This is our first of many examples of the intermixing of data and control information in a
single stream. This is a commonly used, and often necessary, technique in programming
and in data communication. How we prevent data from being misinterpreted as control
information, and vice versa, is a major issue, one we’ll return to often.

DATA COMMUNICATION

Data communication is the process of getting data into and out of the computer’s memory or
storage through a communication device (as opposed to a peripheral device).

In most modern computers, the device controllers are little autonomous computers that
have two "ends" -- one end is connected to the computer’s memory, and the other to the
device. Thus the device controller is an "interface" between the device and the computer. It
shields the computer from the specific electrical and mechanical characteristics of the
device, and vice versa.

The device controller has registers which are accessed as if they were computer memory
locations. Some of these registers are for data, and others are for control purposes. The
control registers include quantities called "flags", which indicate that an event, such as the
arrival of data, has occurred and needs to be handled.

POLLING:

Input and output can be "polled" or "interrupt driven". In a dedicated, single-user
computer, or a device like a terminal, which only does one thing at a time, the CPU can be
executing a program which repeatedly looks at the device’s data-ready flag while waiting
for input, and then fetches the desired data item from the data register when the flag
appears, and then "resets" the flag. This is called "polling", and it prevents the computer

Page 6 INTRODUCTION

from doing any other work while it is waiting for input. Example:
100 load 1, 500 Load the flag register.
101 be 1, 100 If it contains zero, go back & load it again.
102 load 1, 501 Flag nonzero, so now load data.

One obvious problem with this approach is that if the data never arrives, the computer will
be stuck in its polling loop forever. Such an input request is called "blocking": the process
blocks until the requested input arrives.

One way to avoid blocking is to restrict the number of times the device will be polled before
the computer gives up:
100 lda 2, 1000 Only look 1000 times
101 load 1, 500 Load flag register
102 bn 1, 106 If nonzero, set PC to 105
103 dec 2 Otherwise, decrement loop counter
104 bge 2, 101 If result is greater or equal to zero, loop.
105 halt Failed to get input, halt.
106 load 1, 501 Flag went up, load data.

Suppose it takes 1 second to execute instructions 101-104 a thousand times. This means
that we have set a 1-second "timeout" on the input. However, if we go out and buy a new
model of this computer which is twice as fast, then it will time out after half a second,
instead of a single second. This is a danger of "timing loops".

INTERRUPTS:

Most modern computers allow other work to progress while waiting for input. Polling is not
done, and timing loops are not necessary. How is this possible? These computers contain a
device called an interrupt controller. This device is actually a separate, special-purpose
computer which constantly polls the flag registers of all the device controllers. Whenever it
sees a flag "go up", it saves the value of the program counter in a special place, and then
looks in a special table, called the "interrupt vector", at the entry associated with the
device, and takes the address stored there and puts it in the program counter. The address
in the interrupt vector is the location of an "interrupt service routine".

Here’s a simple example, in which the computer counts up until the user types a character:
100 clear 1 Set R1 to zero
101 inc 1 Increment R1
102 jump 101 Do it again and again and ...
103 halt

210 348 Interrupt vector
211 785 ...
212 103 Entry for data available at terminal
213 442
...

As soon as the user types a character, the program halts, with the count left in R1. In a
more realistic example, the computer doesn’t halt, but copies the character from the data
register to a place where the program can use it. For instance, terminals are typically
connected to computers through a device called a UART (Universal Asynchronous
Receiver/Transmitter). The UART has a communication cable connector on one end, and
registers and flags on the other. When a character arrives, the data-ready flag goes up.
The computer must copy the data character out of the data register and "push down" the
flag before the next character arrives and overwrites the data register.

Understanding Data Communication Protocols and Software Page 7

On a system with many such devices, flags are going up all the time. The machine is
jumping around frantically, responding to the data-ready interrupts, very similar to how
you play the carnival game Whack-A-Mole.

FRONT ENDS:

Even when i/o is interrupt driven, a computer that does a lot of communication will find
itself spending large amounts of time handling interrupts. Every time a character arrives
at a communication port, the computer must stop what it’s doing, get and dispose of the
character, and then put things back the way they were (more about this next time).

Some computers come with "front end communication processors" to relieve the main
computer of much of this tedium. These front ends handle the interrupts, collect the data,
and then neatly deposit it directly in the computer’s memory. This allows the computer to
devote its resources to "real work".

ENCODING -- TRANSMISSION -- DECODING OF DATA
We’ve shown how a computer stores instructions, addresses, and data all in the same
memory space. But how is the memory space organized, and how are the contents of the
memory interpreted? First, the obligatory digression on...

NUMBER SYSTEMS:

A string of m digits a(m-1), a(m-2), ..., a(1), a(0) in base N represents an m-digit number,
the sum of a(i) * N**i for i = 0 thru m-1. The digits for base N range from 0 to N-1, where
each digit is a single symbol. If N is greater than 10 (decimal), then usually alphabetic or
other characters are used.

The DECIMAL (base 10) system we use in everyday life uses the digits 0-9.
A decimal number 1234 = 1 x 10^3 + 2 x 10^2 + 3 x 10^1 + 4 x 10^0
(powers of 10) = 1000 + 200 + 30 + 4 = 1234
1, 10, 100, 1000, ...

In a computer, numbers (integers) are represented in base 2, using the digits 0 and 1. This
is called the BINARY system.
A binary number 1011 = 1 x 2^3 + 0 x 2^2 + 1 x 2^1 + 1 x 2^0
(powers of 2) = 8 + 0 + 2 + 1 = 11
1, 2, 4, 8, 16, ...

OCTAL (base 8) uses 0-7. An octal digit corresponds to exactly 3 bits.
An octal number 2573 = 2 x 8^3 + 5 x 8^2 + 7 x 8^1 + 3 x 8^0
(powers of 8) = 1024 + 320 + 56 + 24 = 1424

HEXADECIMAL (base 16) uses 0-9 and A-F. A "hex" digit corresponds to exactly 4 bits,
e.g. 9F hex = 1001 1111 binary. A decimal number doesn’t.
A hex number 1E9A = 1 x 16^3 + 14 x 16^2 + 9 x 16^1 + 10 x 16^0
(powers of 16) = 4096 + 3584 + 144 + 10 = 7834
1, 16, 256, 4096

How many different numbers be represented in n decimal digits? 10n. How many different
numbers be represented in n binary digits? 2n.

INTERNAL REPRESENTATION OF DATA

Page 8 INTRODUCTION

Computers store all data as seqeunces of binary digits, or "bits", i.e. zeros and ones. The
computer’s memory is organized into fixed-size chunks called "bytes" and "words". A byte is
typically 8 bits long, and a word is usually 16 or 32 bits. A byte is typically used to hold a
character, and a word is typically used to hold an instruction, an address, or a number. A
register is usually word-size.

Usually, the smallest unit of data in the computer’s memory that can be directly addressed
or manipulated is a byte. The finer the granularity of address references, the longer must
be the addresses. Since the word length of the machine determines the amount of circuitry
that most go into all of its data paths and registers, it is not practical to have very long
words. Therefore, to get the most out of an address, it is used to rererence a byte or a word,
rather than an individual bit.

The other side of the coin is that the more granular the addresses, the more instructions
are required to extract bytes or other fields from within words. A common design is a 32-bit
word length, with byte addressing, allowing 2 to the 31st power bytes to be addressed.
That’s about 2.15 billion bytes.

CHARACTERS:

People have been storing and communicating information for thousands of years. Com-
puters are only doing what people have always done, but in a more formalized, mechanical
way.

In spoken language, ideas are expressed in "real time" as sequences of sounds, which
compose words, phrases, and so forth, strung together according to commonly accepted
rules. Thus speech symbolically represents ideas.

Information may be stored in a graphical way for reference at a later time, as pictures or
hieroglyphs (which substitute for speech by representing ideas directly), or as letters,
digits, and punctuation (which are a "second-level" symbolism: symbols that stand for
symbols that stand for ideas).

Pictographic symbolism is more widely comprehensible than alphabetic writing. Pictures
can be understood by people who speak many different languages. Even when highly
stylized, such as Chinese ideograms, they can form the basis of communication between
people who have no spoken language in common. Alphabetic or numeric writing, on the
other hand, is specific to a particular language or number system.

When machines were first invented that could store or process information, a method was
needed to encode symbols into a form the machine could store and manipulate, because
these early machines could not be expected to read documents, let alone pictures, directly.
The first method devised for storing data to be read by machine involved punching holes
into cards. The Jacquard loom (early 1700s) and the Hollerith tabulating machine (1890
census) were two landmark devices.

Since these machines were invented in Europe and North America, the machine symbols
were chosen to correspond to alphabetic or numeric symbols, plus any additional symbols
necessary for control of the machine itself.

Thus a third level of symbolism was introduced: a machine-specific representation of
language-specific symbols for ideas. These three levels of symbolism persist into the
present day.

Understanding Data Communication Protocols and Software Page 9

CHARACTER SETS:

Data communication, as we know it today, began with telegraphy in 1837: Morse code, in
which the symbols are assigned to letters based on their frequency of occurrence in typical
English text (ETAIONSHRDLU...), the most common letters having the shortest symbols
(Wheel of Fortune).
E . A . _ R . _ . L . _ . . 1 . _ _ _ _
T _ I . . S . . . X _ . . _ 2 . . _ _ _

Dit (.) = 1 time unit, Dah (_) = 3, Interchar space = 3, Interword space = 5. Letters have 1 -
4 symbols, digits have 5, punc & ctrl have 6.

Morse code is well suited for human transmission & reception -- it minimizes the code
length for typical messages, and therefore maximizes the transmission efficiency. And it
also has the advantage of extensibility -- additional code words can be added with 7 bits, 8
bits, 9 bits, etc. (not that this has been done)...

Although Morse code is a good encoding for transmission, it is not well suited for storage in
computers, which have fixed-length bytes that can contain any pattern of 0’s and 1’s.

How can we design a character set to fit into fixed-length bytes? First, note the length of
the byte, in bits, call it n. Then, you can have 2^n symbols in your alphabet. Make a list of
the numbers 0 through 2^n - 1, and pick a symbol to go with each number. Then build
keyboard and printing devices that honor this code. For instance, if you push the "A" key, it
sends a byte with value 65 to the computer. If the computer sends that same byte to a
printer, the letter "A" appears.

What are some criteria to be used in designing a code? (ask the class)

• It should include all the symbols you’ll ever need, because once you’ve built all
these keyboards and printers, it’ll be tough to add new symbols. (you’ve created
a standard!)

• The codes should be assigned in alphabetical and numeric order, so that the
computer can easily sort records composed of these characters, and algorithms
for converting between numeric character strings to internal numbers can be
simple. (show a sample program for converting numeric strings to internal
numbers...)

• There should be some special characters used for control, rather than data.

How does Morse code fit these criteria?

Here are some real computer codes:

12-symbol Hollerith code (1890) - 10 digits and 2 special symbols.

A card code, one punch per row. Rows 11 and 12 for control. Around 1932, this code was
expanded to include letters, -, *, and &.

5-bit Baudot (CCITT #2, 1931)

Uppercase letters, digits, punctuation marks. But 2^5 = 32 is less than 26 UC letters + 10
digits, so special characters are used to indicate character set shifts: 11011 = Figure Shift

Page 10 INTRODUCTION

(digits and punctuation), 11111 = Letter Shift. Baudot code was intended for use with
Teletype machines, which were to replace Morse-code telegraphy. Teletypes had the
advantage that they "transcribed" the message automatically (by printing it on paper), and
could also store the message for later retransmission on punched paper tape.

Aside from its limited repertoire of characters, Baudot has certain other unfortunate
characteristics: letter codes are not in alphabetical order, numeric codes are not in numeric
order, etc., and the same code word can mean two different things, depending on the shift
state (which means you can’t tell what a character is if you look at it out of context). This
makes Baudot encoding poorly suited for computer use.

6-bit IBM BCD or BCDIC (2^6 = 64) (card code)

IBM. Evolved from Hollerith code, originally a card code, eventually also an internal code.
As a card code, BCD allowed multiple punches per column. BCD went through several
versions:

V1 late 1950s: 48 graphics, punches and numeric codes defined for use on
early IBM computers.

V2 Addition of European character substitutions for @#$, and addition of
()+=’ for Fortran and math, subst for %@#$ and box.

V3 1962: 6 bits, 64 graphics, allowing math and commercial symbols to
coexist.

Despite the problems of each version, codes for alphabetic and numeric characters were in
natural order, allowing easy translation and sorting.

7-bit ASCII (first version 1963, present version 1977) (2^7 = 128)

The result of standards committee work. The aim was to design a standard code to be used
by all computers worldwide for information interchange. In order to encompass the
requirements of commercial, scientific, and military computing, plus AT&T and Western
Union requirements, plus the need for control characters, it was decided that more than 64
characters would be needed. The CCITT code extension technique of shifting was avoided
because of the effects of line noise on shift characters. A 7-bit code was chosen, which
allowed for lowercase as well as uppercase characters. An 8-bit code was not chosen for
reasons of economy.

8-bit EBCDIC (1964) (2^8 = 256)

IBM. Extension of 6-bit BCD to 8 bits, allowing for lowercase letters, etc., math symbols,
commercial symbols, plus space for future expansion.

Unfortunately, all of these sets coexist. Once a character set becomes popular, it never goes
away. For instance, we now have:

ASCII, used in most terminal communication, dialups, DEC, IBM PC, etc.
EBCDIC, used in IBM mainframes.
Baudot, used in TDD (Telecommunication Devices for the Deaf).

CONTROL VS GRAPHIC CHARACTERS:

The character sets listed above include codes for letters, digits, space, and some

Understanding Data Communication Protocols and Software Page 11

punctuation characters. These are known as graphic characters: they cause ink to appear
on the page, or phosphor to light up on the screen (with the exception of space, which also
counts as a graphic).

Character set designers realized early on that special codes would be necessary to allow the
terminal user to control the computer, or the computer to control the Teletype or printer.
Therefore, most computer character sets include a set of "control characters", like:
Carriage Return (CR): return the carriage (or cursor) to the left margin.
Line Feed (LF): Move the print head (or cursor) down one line.
Form Feed (FF): Advance paper to top of form (next page), or clear screen.
Horizontal Tab (HT): Move print head or cursor to next tab stop.
Bell (BEL): Sound the terminal’s bell (or buzzer, or beeper).
and many more. These control characters are inserted in the appropriate places in the
stream of graphic characters to cause the desired action. The ones listed above are fairly
standardized -- i.e. they can be expected to cause the same action on any terminal or
printer. Others are not. Their effects will vary according to the actual device.

The following program demonstrates how the same data in the computer may be
interpreted as a number or a character:
#include <stdio.h>
main() {

int i;
for (i = 0; i < 256; i++)

printf("%3d %c\n",i);
}

If you run this program, you will see two columns whizz past you on the screen -- the left
column showing the numeric value, and the right the corresponding ASCII character. But
if you want to see them all on the screen at the same time, you can try to modify the
program to display 8 columns of 16 rows each:
#include <stdio.h>
main() {

int i,j;
for (i = 0; i < 16; i++) {

for (j = i; j < i+113; j+=16)
printf("%3d %c | ",j,j);

printf("\n");
}

}

Try running this program. Why don’t the columns line up?

CHARACTER SET TRANSLATION:

How can data from one set be translated to another? Easy enough if the sets were all of
equal length: simply make a table, whose addresses correspond to the numeric character
values in one set, with the contents of each address being the value of that character in the
other set.

But the lengths are not equal. E.g. EBCDIC has twice as many characters as ASCII,
therefore it is impossible to translate arbitrary data from EBCDIC to ASCII, and expect to
be able to translate from ASCII back into EBCDIC. In general, a translation from a longer
code to a shorter one is not "invertible".

A major difficulty in data communications involves translation between different character
sets. In practice, ASCII/EBCDIC tables have been designed, but they are not... (fill in)

Page 12 INTRODUCTION

EXTENDED CHARACTER SETS

How do we accommodate "foreign" alphabets -- Hebrew, Arabic, Cyrillic, Chinese, Japanese
(Hiragana, Katakana, Kanji), Hindi, etc etc.?

For languages like German, Norwegian, and Swedish, a commonly used technique is to
appropriate some of the less-frequently used US ASCII or EBCDIC graphic characters, and
assign different graphics to them, e.g.:

USASCII Germany Norway/Denmark Sweden/Finland
[Umlaut A A/E Umlaut A
\ Umlaut O Slash O Umlaut O
] Umlaut U Circle A Circle A
{ Umlaut a a/e Umlaut a
| Umlaut o Slash o Umlaut o
} Umlaut u Circle a Circle a

But this makes the USASCII bracket, slash, and bar characters unavailable, which is, at
best, an inconvenience for programmers (imagine what a C language program looks like
without {}[]\|). And it doesn’t really solve the problem, even for these languages -- there
are still important characters not represented, like German ess-zet (double S).

What about languages with totally different alphabets? What if the number of characters
in an alphabet exceeds 2^8? What if text must be displayed in a mixture of alphabets?

Computer architecture is already pretty well fixed -- 8-bit bytes, etc., so can’t start
inventing 9-bit, 10-bit, ... codes. Current schemes propose "alphabet shifts", as in Baudot.
E.g. 11111111 = alphabet shift, next byte tells which alphabet: 0 = Roman, 00100110 =
Greek, 00100111 = Russian, etc.

This scheme is reminiscent of the old Baudot shift code extension scheme, and has the same
drawbacks, e.g. what happens if the shift character, or alphabet code gets corrupted?

And this doesn’t even begin to address the question of whether writing in a particular
language goes from left to right, or vice versa (or up and down).

The nice thing about standards is that we have so many to choose from! Some current
character-code standards include:

7-bit ASCII is ANSI standard X3.4 and ISO 646 and CCITT T.50.
ANSI X3.32 specifies graphic renditions for control characters.
ANSI X3.41 and ISO 2022 give 8-bit code extension techniques for ASCII.
ANSI X3.134.1 & ISO 4873 specify an 8-bit code for information interchange.
ANSI X3.134.2 specifies an 8-bit ASCII multilingual character set.
ISO 6937 specifies coded character sets for text communication.
ISO 8859/1 = IBM "code page 500", a superset of ANSI X3.26 (1980)

The fact that there are so many competing standards, plus nonstandard vendor-specific
approaches (like the IBM PC character set), indicates that it will be a long time before
terminals and PCs are capable of operating in a multilingual world.

TERMINALS

Now that we have settled on schemes for representing and storing characters, how do we
get them in & out of computers?

Understanding Data Communication Protocols and Software Page 13

Terminals are devices that let people communicate with computers. Terminals are just
special-purpose computers connected to a keyboard, a screen, and a communication port.
The keyboard allows you to type characters which are sent out the communication port to
the computer. The screen allows you to see the messages you type and the respones the
computer sends back to you. Terminals are the basis for much of today’s data
communication.

Each character you type is sent out the communication port as a 7-bit or 8-bit numeric code
in a particular character set, usually ASCII. Each code that arrives at the communication
port causes the corresponding character to be displayed on the screen. If the computer does
not echo the characters you type, then the terminal also displays these on the screen.

(DRAW PICTURE)

A key issue is unpredictability. The computer does not know in advance when person will
hit a key (fingers!). The terminal does not know when computer will send characters. Both
could happen at same time. This is why communication lines tend to be interrupt-driven
on computers. In terminals, the processor constantly polls the keyboard and the port (it can
afford to do this, because, unlike a general-purpose computer, a terminal has nothing else
to do).

Modern video display terminals (VDTs) have many controls & options, particular to each
VDT (e.g. VT100). These are used by software on the host computer to allow full-screen
applications, to produce special effects, and so forth:

• Communication settings (speed, parity, etc: covered later)

• Local echo, remote echo

• Loadable or switchable character sets (possibly programmable) function keys

• Escape sequences for screen control, special effects (blink, reverse, underscore,
color, curor positioning, screen partitioning, editing, etc)

• Graphics (needs special language, like Tek 4010)

Escape sequences are introduced by the ASCII control character "escape" (ESC), which tells
the VT100 to interpret the subsequent characters as a command, rather than data.

Escape sequence examples for VT100:
ESC [0 J Clear screen
ESC [3 A Cursor up 3 lines
ESC [0 K Erase from cursor to end of line
ESC [4;30 f Position cursor at row 4, column 30
ESC [7 m Reverse video

So the VT100 CPU does not simply copy incoming characters to the screen, but looks for
escape sequences. When found, the VT100 treats them as commands and takes the
corresponding actions. (This is another instance of mixing control information with data.)

The list of VT100 (or 200, or 300) escape sequences is quite long. In fact, the manual the for
new DEC VT320 terminal is about an inch thick. This should give you an idea of what’s in
store for someone who wants to write a PC program that emulates such a terminal.

We will discuss terminal emulation in more detail in a future meeting.

Page 14 INTRODUCTION

SOFTWARE
So far, we’ve looked at several of the fundamental components of computing and data
commmunication: computers, front ends, interrupts, number systems, character sets, and
terminals.

Now, we’ll look at software: the glue that holds all of these elements together. "Software" is
a word originally coined to distinguish computer programs from the physical computer and
its pieces, i.e. from the "hardware". A program is a set of instructions that is loaded into
the computer’s memory for execution. A program is not a permanent part of a computer.
This is what distinguishes computers from most other kinds of machinery -- by changing
their programs, you can make them do entirely different tasks: payroll, weather prediction,
word processing, scientific calculation, ..., and the task that will concern us most, data
communication. It is because computer programs can change that they are called "soft".

It is possible for a computer to have "read-only memory" (ROM), in which a program is
permanently stored. For instance, most computers have a "bootstrap ROM", which contains
the program the computer executes when it is first turned on. This program looks on the
disk for the operating system, loads it into memory, and starts it. If it were not for the
bootstrap ROM, you would have to enter this program into the computer’s memory yourself
every time you turned the computer on. These permanent programs are sometimes called
"firmware" (hard software?). But firmware is really software, developed the same way, but
then etched into memory once it is fully operational and (one hopes) debugged.

PROGRAMMING:

Programming is the process of creating software. It is really a form of writing, in which the
writer specifies a task to be done and exactly how to do it. Very similar to writing a
cookbook, or assembly instructions for a bicycle, but somewhat more formalized, with more
steps.
+-------------------+
| Programmer | (You :-)
+-------------------+
| Documentation | Manual for programming language, OS
+-------------------+
| User Program | The program you write
+-------------------+
| Libraries | e.g. IMSL in Fortran, stdio in C, or runtime system
+-------------------+
| OS Services | Device drivers, etc
+-------------------+
| Hardware Services | Machine instructions, interrupts, physical i/o, etc.
+-------------------+

In addition to writing the program, the programmer must also write documentation for the
program, so that the user knows how to use it. User manuals for typical popular programs
(word processors, database managers) can be quite thick. Documentation should also be
written for future maintainers of the program, since we all know that professional
programmers rarely stay in the same job for more than a year. In fact, the program itself
should be considered the ultimate form of documentation about itself, and programmers
should always be encouraged to write their program as much for future human readers as
for the computer.

MACHINE LANGUAGE:

All programs, no matter what language they are written in, must ultimately be translated

Understanding Data Communication Protocols and Software Page 15

into machine language before they can be executed. Machine language is the internal
language of the computer, typically stored one instruction per computer word, with an
instruction consisting of an operation code, specifying which instruction to execute, and one
or more operands, such as registers or memory addresses.

A list of such instructions constitutes a program. This program specifies, in minute, exact
detail, what the machine is to. The machine does exactly as it is told, and has absolutely no
idea what the programmer’s intentions may have been. It is up to the programmer to code
the program correctly.

Example (IBM PC machine language, addresses shown in hex):
Address Contents (binary) Interpretation
0000 0000010011010010 Data = 1234
0002 0001000111010111 Data = 4567
000A 000000000000101010001011000101100000000000000000 MOV DX, 0000
000E 00000011000101100000000000000010 ADD DX, 0002

Note, the IBM PC has variable length instructions.

ASSEMBLY LANGUAGE:

Back in the old days, machine language programs were actually entered into the computer
by hand, a bit at a time, using little switches. The programmer had to have know the bit
patterns of the operation codes, the exact instruction format, etc.

Furthermore, since instructions may contain the addresses of data or other instructions,
these addresses had to be known beforehand, and if an instruction needed to be inserted or
deleted, then many other instructions would have to be adjusted to reflect the changes of
address.

Clearly, programming in machine language is tedious and error prone.

Assembly language allows substitution of textual symbols for machine instructions and
addresses. This way, the programmer does not have to memorize bit patterns for the
opcodes, and the computer can do the bookkeeping required for address resolution.

Generally one assembler statement corresponds to one machine instruction. An assembler
program translates symbolic assembly language source into binary machine code. It looks
up operation codes in a table, and substitutes the corresponding numeric values, e.g.
CLC = 11111000 (Clear Carry Flag)
CLI = 11111010 (Clear Interrupt Flag)
LEA = 10001101 (Load Effective Address)
NOP = 10010000 (No Operation)

Address resolution is a bit more difficult, since addresses can be referred to before they are
defined. For this reason, assembly generally proceeds in two passes. Pass 1 translates the
opcodes and makes a table of labels and their corresponding offsets (among other things),
leaving "blanks" in the address fields of any instructions that refer to addresses that are
defined further down, e.g.
Assembly Code Pass 1 Pass 2
A: JMP B 100/ 11101011 (B) 11101011 11001000 (= 200)

:
B: CLI 200/ 11111010

Page 16 INTRODUCTION

In pass 2, after the values of all symbolic addresses are known, the assembler fills in all
references to them.

The original assembler was probably written in machine language, and then recoded into
assembly language, assembled by the machine language version, which could then be
discarded forever. Then, the assembler can be used to assemble itself, as new features are
added. This process is called "bootstrapping".

Assembly language is used for various reasons:

• On many systems, it’s the only programming language that is supplied free (the
IBM PC is a notable exception).

• It provides access to data manipulation functions that may be unavailable in a
particular high-level language, especially bit manipulations (test and/or set,
logical AND, OR, and XOR), unsigned arithmetic, shifting, etc.

• It provides direct access to specific addresses, allowing programs to get at
device registers and interrupt vectors, allowing direct control of i/o .

• Hand-coded assembly routines can sometimes be much more efficient than the
code generated by high-level language compilers.

However, assembly language is not at all transportable between different kinds of
machines. It is also comparatively tedious to code, since it deals in minutiae, and once
coded it is hard to read.

ACCESS TO OS SERVICES FROM ASSEMBLY LANGUAGE:

What happens when a user program attempts to execute an instruction that is not known
to the machine? Most machines handle this problem by generating an "illegal instruction"
interrupt. Control immediately passes to the OS’s illegal instruction interrupt handler,
which normally terminates execution of the program and displays some kind of error
message.

But selected operating system services, such as opening files or doing input and output,
must be made available to user programs. But many computer systems are organized so
that the operating system is in a separate address space from the user program. This
prevents the user program from writing over and destroying the operating system. But it
also prevents the user program from "calling" subroutines in the operating system, because
the user program can’t "see" them. Access is often provided through the illegal instruction
interrupt. A special "illegal instruction" is defined to cause this interrupt, and when the
system’s illegal instruction handler gets control, it checks if the opcode is this special one,
e.g. (on the PC)
INT = 11001101

and if it is, then checks the effective address, and treats it, plus any data in the registers, as
a "function code" and arguments, e.g.
MOV DX, OFFSET STRING
MOV AH, 09H
INT 21H

is a "DOS call". Register AH contains the function code "09H" which means "print a string",
and DX contains the address of the string.

Understanding Data Communication Protocols and Software Page 17

As an aside, MS-DOS does allow user programs to write into the operating system, so care
must be taken to avoid this. But in some cases, it’s desirable. In fact, this is how many PC
utilities work. The method generally used is to substitute the address of some user-written
code into the interrupt vector for a particular interrupt. Then, whenever the interrupt
occurs, the user code, rather than the normal operating system handler, is executed. For
instance, many data communication programs work this way, because the MS-DOS
communication device handlers are generally quite slow and limited in functionality. When
such a program exits, care must be taken to restore the interrupt vector to its previous
state.

System programs are the ones that need to rely most heavily on the underlying OS and/or
hardware, and must have access to the widest possible range of system facilities. Data
communications programs are good examples.

Often access to these very specific and/or low-level functions can be achieved only from
assembly language. So high-level languages that need to do this must call upon
assembly-coded functions.

HIGH-LEVEL LANGUAGES (PROCEDURAL):

High level languages allow procedures to be specified in generic constructs independent of
the underlying machine’s architecture and instruction set. One statement in a high level
language may correspond to many machine instructions. High level languages include:

• Variables

• Data types (integer, real, string, ...)

• Data structures (arrays, structures, lists, ...)

• Expression evaluation

• Assignment of value (expression) to variable

• Blocks & scoping of variables

• Arithmetic and other operators (+, -, /, *, etc), with precedence

• Arbitrarily complex arithmetic expressions

• Relational operators (<, >, =, etc) and expressions

• Data type conversions in expressions or assignments

• Control structures (IF-THEN-ELSE, FOR, WHILE, etc)

• Procedures (functions, subroutines), parameters passed by reference, value

• Printing and formatting functions (numbers to strings, strings in fields...)

• Comments

• Only limited access to OS services (OPEN, CLOSE, READ, WRITE, etc)

There are relatively few popular high-level languages: C, Cobol, Basic, Pascal, LISP,
Fortran, PL/I, Ada, etc. The definition of a high level language tends to be fairly uniform
across machines and operating systems so that, compared to assembly language, it is

Page 18 INTRODUCTION

painless to move a high-level language program from one machine to a different one.

Most languages provide access to OS services through functions like open, close, read,
write, etc, which are calls to the file system.

"VERY HIGH-LEVEL LANGUAGES"

Tend to be non-procedural. For instance, a SCRIBE document "program" describes the
general style of a typeset document, freeing the "programmer" from specifying the
procedure -- "make a CACM article", "this is the title", "this is a footnote", etc. (SCRIBE
knows exact format of columns, footnotes, bibliography, etc, for each document style).
Another example: database query languages -- "tell me all the left-handed males older than
35 who weigh less than the average female younger than 35".

THE PROGRAM DEVELOPMENT CYCLE

Source programs are created by the programmer using a keyboard (terminal, PC, or even
keypunch), often in conjunction with a text editor or word processing program. The result
is one or more text files, which are readable both by people (e.g. on the screen, or printed on
paper) and by the computer’s language translator (compiler or assembler). These files are
called "source files".

A program may be built from one or more source files, or "modules", written in assembly
language or a high-level language. The assembler or compiler produces an intermediate
form of machine code, called "relocatable", or "object", code, which must be "linked" and
"loaded" before it can execute.

LINKING AND LOADING:

Each module’s internal addresses must be adjusted to reflect the module’s position relative
to the beginning of the program, after all the modules have been concatenated and linked
together. This is done by a linker program.

Linking also resolves cross references, for instance when Module B refers to a symbol
defined in Module A. During the link process, the linker makes a table of such references on
the first pass, and fills them in on the second, much as the assembler resolves addresses
within a module.

When an executable program is loaded from a disk file into memory, some last-minute
fixups may be required, like loading base or segment registers, to reflect the actual physical
address where the program has been loaded. Once the fixups are applied, the operating
system locates the program’s starting address and transfers control to it. E.g. on IBM PC
or 370. Loader finds free memory, puts program in it, then sets base register.

Often, the linking and loading functions are combined into the same program, e.g. MS-DOS
LINK. The result is a file that contains an executable program -- approximately identical
to the memory image of the program.

LIBRARIES:

Languages often have libraries of commonly used functions, which can be included with
user programs, like the Unix stdio library (printf, etc), or the Fortran IMSL library (math
functions). These are generally in the form of separate, precompiled modules (i.e. object
modules) that are concatenated together into a single file. Libraries can be either

Understanding Data Communication Protocols and Software Page 19

monolithic (the whole library gets loaded with your program) or indexed (the required
modules are extracted and loaded with your program).

On some systems, libraries can take the form of "runtime systems", which are combined
with your program at runtime, so that the code does not take up space on disk. The pitfall
here is that when the runtime system changes, the programs that use it might stop
working.

THE PROGRAM DEVELOPMENT CYCLE

The program is created by typing it into a text editor. Then it is compiled or assembled,
then linked and loaded, and then the executable program is invoked. Errors can occur
during compilation, linking, or execution, and when they do, the program can be debugged.

types compiles links debugs
User -----> source --------> object\

source --------> object >-------> executable -------> (back to
source --------> object/ source)

headers libraries runtime system

An executable program, once loaded into memory, may be debugged at machine-code,
assembly, or source level if the tools are available (often, they are not). Such tools allow the
program to be single-stepped, variables examined and changed, etc. When the bug is
located, the fix is applied in the editor to the source code, and the process repeats until the
program is complete.

Program development may be "top-down", or "structured" -- write gross outline, then fill in
successive levels of detail -- or "bottom-up", usually when the whole program depends on
some low level function -- write and debug the low-level function, then add on upper layers
that use it. The bottom-up style is common in data communications programming, where
low-level communication must be established before high-level operations can take place.

COMPILERS VS INTERPRETERS:

A compiler or assembler produces immediately-executable machine code (after linking &
loading). Advantages: efficient execution, etc. Disadvantages: tedious development cycle.

Interpreter (like BASIC, LISP): statements are "compiled" each time they are encountered.
The program development cycle described above is entirely sidestepped. Appearance of
execution directly from source code. Advantages: easy program development, debugging.
Programs may be stopped, variables examined, modified (in some cases), continued or
restarted. Disadvantage: slow execution.

OPERATING SYSTEMS

An operating system is a special piece of software, providing the environment in which all
other software runs. It presents a "virtual machine" to the user, hiding the details of the
particular physical machine. This allows programs to be portable, generic, rather than
specific to a particular machine, memory, and device configuration.

The OS is the basic control program of the computer. Its principal job is to allocate and
protect the resources of the computer.

An OS is a good example of layered, modular software. Each piece has well defined
functions and well defined interface to other pieces.

Page 20 INTRODUCTION

We will look at a full-fledged multiprocessing, interactive, timesharing, multiuser OS.
Microcomputer OS’s lack many of these functions, but there is increasing pressure to add
them in (e.g. in OS/2) -- the microcomputer OS’s are gradually growing into the "old"
multiprocessing model.
LAYERS OF AN OS: ***** DRAW THIS A PIECE AT A TIME *****

7 User :-) (and manual?)
+-----------------------+

6 | Shell or User Program | User context
+-----------------------+---------------

5 | Scheduler | Supervisor
+-----------------------+ Context

4 | File Access |
+-----------------------+

3 | Input/Output |
+-----------------------+

2 | Memory Management | /Wait & Signal
+-----------------------+/

1 | Kernel |--First Level Interrupt Handler
+-----------------------+\

0 | CPU, memory, etc. | \Dispatcher
+-----------------------+
(LEVEL 0, PICTURE FROM LAST TIME)

What is all the stuff below the user program? Why can’t you put a Lotus or Kermit diskette
into the disk drive, turn on the machine, and run the program directly, without an OS?

Just as functions that are commonly used by programs in a certain language are gathered
into a library or runtime system, the functions that are common to all programs that run on
a computer are gathered into the operating system. Therefore, all programs can use these
functions in a common, consistent way, and each programmer does not have to code these
functions into each program. Given the variation in computer equipment, this would not
even be possible, since the program would have to know what slot a board is in, which
board it is, etc etc.

And finally, there are functions the user program simply cannot be trusted with -- disk and
file management, etc. And of course, on multiuser systems, the operating system must
schedule users’ access to the system’s resources, and must protect the user processes (and
files) from one another.

The interactive user only sees the shell, or "user interface" (e.g. COMMAND.COM on the
PC). The programmer may also be allowed certain restricted entrees into the OS.

BASIC NOTIONS

Process: "An address space in execution", a runnable (or running) program.
Interrupt: An asynchronous (unpredictable) event, noticed by hardware (interrupt

controller), which transfers control to a specified program (interrupt
handler) for each kind of interrupt. The addresses of the programs are
kept in a table (interrupt vector) whose location is known to the
hardware.

Priv’d instructions, executable only from "supervisor mode", used for:

• memory management (OS can R/W any memory, user can
only R/W own).

Understanding Data Communication Protocols and Software Page 21

• enable/disable interrupts

• switching processes

• i/o

• halt

SVC - SuperVisor Call. The mechanism that lets user programs invoke functions of the
operating system. Usually invoked via an interrupt.

SYSTEM KERNEL (OR NUCLEUS) - OS LAYER 1

Most critical and machine-dependent piece of software in system. Usually written in
assembler (exceptions: Unix, Burroughs/Algol). Should be as simple as possible, for
efficiency and correctness. Provides environment in which processes can exist. The kernel
consists of:

FIRST-LEVEL INTERRUPT HANDLER:

Determines source of interrupt, saves context (process info and PC) of current process,
dispatches to appropriate handler via the dispatcher. Interrupts may come from external
devices, internal conditions (like arithmetic over- or underflow), system calls (typically
invoked via "illegal instructions"), or the system clock.

Most systems provide an "interrupt vector", a table of interrupt handlers, one for each kind
of interrupt. Some systems further classify interrupts by priority, so that a lower-priority
interrupt (e.g. from a communication line) cannot interrupt a higher-priority one (e.g. from
disk). (On some machines, like many PCs, this can be all done in hardware.)

DISPATCHER:

Low-level scheduler, entered upon any interrupt (invoked by 1st-level interrupt handler),
starts interrupt routine, returns to process if still most suitable to run, otherwise saves
environment of process, retrieves environment of new process, and transfers control to it.
Next process is selected by high-level scheduler from the process queue.

INTERPROCESS COMMUNICATION PRIMITIVES:

(skipping all this...)

INPUT/OUTPUT (LAYER 3)

Device drivers, buffer management, "access methods"...

A device driver is a portion of the operating system software that embodies specific
knowledge of the control mechanisms for a particular device. It provides a uniform
"interface" between the device and higher-level software, allowing the higher-level software
to issue input/output requests in a standard format, like "read sector abc and put the data
at address xyz", without specific knowledge of the hardware, slot, registers, etc.

Device driver generally operates at interrupt level -- gets data from device, puts it in buffer,
clears the interrupt condition, and dismisses the interrupt, allowing the previous program
(or the scheduler) to resume control.

Page 22 INTRODUCTION

FILE SYSTEM (LAYER 4)

Uniform set of operations on files, independent of device. Online disk storage - data always
accessible, allowing users to share programs, libraries, data. Directory provides a catalog of
available files.

File system allows PROGRAMS (not users) to invoke following functions:

• file creation & deletion

• access to files for reading & writing

• automatic management of disk space

• reference to files by symbolic names

• failure protection (redundancy, robustness, backup mechanism)

• sharing and protection

• supervisor calls for file i/o at "logical" level: open/close, buffered read/write
character, record, line

• Other devices on which data resides (tape, networks) can be treated as files.

Directory structure: (DRAW PICTURE)

• Storage allocation table

• Directory blocks: name, disk address, protection, size, date, write-bit, use count,
author, account, etc etc...

• Flat file systems, 1-level, 2-level, multilevel systems.

File operations: opening & closing, file descriptors, reading & writing:

• Open:

• find actual device look up name in directory check access (protection,
multiple access, etc) create file descriptor (fd): (LOOK IN FILE.H...) tell
how this is

• file name, is similar to pointer to device descriptor/driver network
operation... length of file location of start of file, location of next
character (or block), mode of access (read, write, append).

Read/write: operations refer to fd. Buffering, etc, is invisible. (show connection
to device driver)

• Close: flush pending output, fix write bit & use count, release fd.

Usually the user program sees only the file system. The file system, in turn, calls on the
device driver:
USER FILE SYSTEM DEVICE DRIVER
read() Get char from buffer Get sector or char if buffer empty
write() Put char in buffer Put sector or chars if buffer full

RESOURCE ALLOCATION & SCHEDULING (LAYER 5):

Understanding Data Communication Protocols and Software Page 23

(skipping all this...)

SIMPLE INTERRUPT-DRIVEN I/O EXAMPLE:

Let’s look at a simple example of how the OS handles a simple terminal interaction. User
program "X" is running on the computer. The program counter (PC) indicates the next
instruction in X to be executed.

Suddenly, a user types a character at a terminal.

The character arrives at the UART, which puts it in its holding register and raises its
"input ready" flag.

The interrupt controller notices the flag and:

• Gets the address of the UART’s device handler (DH) from the interrupt vector

• Saves the current PC

• Puts the DH’s address into the PC, so the next instruction starts the DH

The DH copies the character from the UART to an internal buffer.

The DH pushes the UART’s flag down, so the UART knows the character was read, and the
interrupt controller knows the interrupt was handled.

The DH "dismisses" the interrupt. The saved PC is restored, and program X is continued
where it left off.

When the user program wants to read a character from the terminal, it gets the next
unread character from the internal buffer.

A SLIGHTLY MORE COMPLICATED ILLUSTRATION OF OS SERVICES (many steps
skipped)

Suppose a user of a timesharing system wants to copy some text from her terminal into a
file. The user first issues a command, like

"COPY TTY: FOO.BAR" (DEC operating systems), or "cat > foo.bar" (UNIX)

What really happens? Let’s look at what goes on just after user enters this command.

The shell calls the OS file service to create a new, empty file FOO.BAR, and open it for
write access.

. File service attempts to create a new file called FOO.BAR.

... But to do this, file service must call upon the disk device driver to read the directory
blocks.

..... But to read directory blocks, the disk device driver must know the details of disk
operation, how to feed read-block commands to the disk controller, etc. The device driver
then waits for a completion interrupt from the disk controller, and then returns a pointer to
the block to the file service.

Page 24 INTRODUCTION

... The file service continues to read directory blocks until it has found FOO.BAR, or it has
read all the directory blocks and did not find FOO.BAR.

... If FOO.BAR existed previously, file service must free all the data blocks previously
occupied by FOO.BAR, by setting FOO.BAR’s length to zero, and marking the old blocks
free in the storage allocation table. If FOO.BAR did not exist previously, a new directory
entry for an empty file FOO.BAR must be created.

..... Disk service must be called to update the appropriate directory and storage allocation
disk blocks.

. Assuming all went well (no i/o errors, etc), file service returns a file descriptor (fd) for the
new file for use by the shell.

2. The shell issues an input request to the terminal for one character, and waits for the
character to be typed.

. The input request activates the terminal device driver, which sets up an IORB for the
terminal, and waits for completion.

. User’s program waits (is blocked).

3. User gets a phone call and doesn’t type any characters for a while. Other users are
making demands upon the computer. As this occurs, the scheduler begins to activate the
other users’ processes.

. The scheduler must call upon the low-level dispatcher in the nucleus in order to activate
other users’ processes.

4. Eventually, so many other active processes want to use the computer that our user must
be moved to secondary storage.

. The scheduler calls upon the memory manager to determine which process to replace. It
chooses our user’s process because it is in a wait state.

. It then calls upon the disk driver to transfer our user’s memory pages to disk.

. Then it calls upon the dispatcher to activate the next process.

5. Our user gets off the phone and types a character.

. The character causes an interrupt, which is caught by the terminal device driver, which in
turn signals completion to the user’s process.

. However, the user’s process was not in memory. But the signal caused the wait state to be
cleared, so the process is eligible to run, so the scheduler calls calls upon the memory
manager to find space for the user’s process pages in memory. But since there is no free
space, the memory manager must choose another process to "swap out", and calls upon the
disk service to do so. Then it calls upon the disk service to read our user’s process pages
into the newly freed memory.

. The character which the user typed is now copied into the file system’s terminal input
buffer.

Understanding Data Communication Protocols and Software Page 25

6. The shell now reads the char from the buffer and writes it to the disk file FOO.BAR.

. The OS file service saves the character in a disk block buffer.

7. The process repeats until the file service’s disk block buffer is full. At that point the file
service calls upon the disk driver to read the disk storage allocation table. From this table,
a free block is selected, marked as used, and the storage allocation table and the new data
block are written to disk.

8. The process repeats, character-by-character, block-by-block, until and end-of-file is
(somehow) signalled from the terminal. The shell calls upon the file service to close the file.
File service calls upon disk service to write out the last data block, then it sets the file
creation date and file length in the directory block and calls upon disk service to write that
out too.

Page 26 INTRODUCTION

Understanding Data Communication Protocols and Software Page 27

2. COMPUTER NETWORKS
There are two kinds of data communication: point-to-point, and networks. We have more
than 100 years experience with point-to-point communication: telegraph, teletype,
terminal-to-computer, etc.

Point-to-point Network
A--------B A-----------B J--------K

| \ / | | |
| \ / | | |
| C | H--------I
| / \ | |
| / \ | |
D E--------F--------G

Point-to-point communication is still the predominant mode of communication. And the
lessons we’ve learned from it have strongly influenced the design of networks.

TERMINAL-TO-HOST COMMUNICATION
Much of today’s data communication follows the terminal-to-computer model. We still have
a large number of real terminals connected to computers. What are some of the issues in
terminal-host communication?

The terminal provides a certain set of functions --

• Generic functions:

• Display and transmission of ASCII characters

• Response to CR, LF, FF, HT

• Response to terminal-specific escape sequences (no universal standard)

And the host computer provides its own set, through its "console driver" --

• Reception and transmission of ASCII characters

• Response to host-specific character sequences:

• Commands (shell)

• Control characters (interrupt/cancel, editing, status inquiry, etc)

• Knowledge of how to control the screens of specific terminals.

Control characters (like Ctrl-Y or Ctrl-C) often cause special actions and are therefore not
treated as data.

When the host wishes to control the appearance of the terminal’s screen, then the terminal
and the host must agree about what escape sequences to use. This means the host must
know the terminal type. But how does it know?

1. User can tell it (but what if user doesn’t know either?)

2. It can be entered into system tables (terminal on port 23 is a VT100) (but
what if this changes?) (and what about dialups?)

3. Terminal can include a "what are you?" inquiry mechanism (but not all

Page 28 COMPUTER NETWORKS

terminals do).

If the host thinks it’s controlling a different kind of terminal than the user really has, the
result will be incomprehensible, fractured screen displays.

Hosts or applications may keep tables of "generic" terminal functions for each particular
terminal (clear screen, clear line, etc). Many ways to do this -- in the shell and in each
application, in the console driver with calls available to user programs, or in libraries like
Unix "termcap" and "curses".
Terminal Clear Screen Clear to end of line Highlight

VT52 ESC H ESC J ESC K (none)
VT100 ESC J ESC [H ESC [J ESC [K ESC [7 m
C-100 Ctrl-L ESC Ctrl-U ESC G

Terminals are intended purely as "interfaces" between a human being and a computer. The
terminal reacts only to the user’s keystrokes or characters arriving from the host computer,
and takes no actions "on its own". For its own part, the host might make certain
assumptions about terminal connections: e.g. that input will be relatively slow, because it’s
coming from people’s fingers (the fastest typist can only do about 120 wpm = 600 cpm =
6000 bpm = 100 bps), but that output can be voluminous and fast. Sometimes the console
drivers and associated buffers are designed on this assumption.

PC-TO-HOST COMMUNICATION
Increasingly, people use PCs in place of terminals, because, as general-purpose computers
with built-in keyboard and screen, they can be programmed to emulate terminals, in
addition to all their other functions.

Not only can a PC emulate all the functions of a particular terminal (or several different
terminals), but it can surpass the terminal’s capabilities in various ways:

• keys can be redefined

• screen memory can hold previous screens for rollback

• screens can be copied to the PC’s disk ("raw download")

• PC disk data can be copied to the communication port ("raw upload")

• various translations can be done (e.g. European character sets)

But terminal emulation does not provide an error-free link between the host and the
mainframe, any more than a terminal-host link does. Thus data transfer is necessarily a
risky business: data can be lost in transmission or corrupted by interference, undetectable
by the receiver.

Data can be lost not only because of transmission problems, but also because the host
computer simply was not designed to receive characters in a continuous stream from a
terminal.

If non-error checked data transfer can be done by a terminal emulation program, then how
can error-free data transfer be accomplished? The problem is that a terminal emulation
program is self-contained, and talks to the host as if it were a terminal. No special
programming of the host is required. But terminals have no provision for error recovery, so
the host has no way of dealing with a terminal on this level.

Understanding Data Communication Protocols and Software Page 29

To transfer data reliably, between two independently functioning devices of possibly
differing speeds and other characteristics, over a possibly hostile communication medium,
some level of cooperation is needed between the two computers which is higher than the
terminal-to-host model: a set of rules, procedures, and formats by which the two computers
exchange information to achieve a desired objective. In other words, a "protocol".

An error correcting protocol requires cooperating processes (programs) on each end of the
connection -- one on the PC, one on the host -- to format, encode, and decode special
messages and to request retransmission of damaged messages. These messages contain the
data to be transferred, plus error-detection and sequencing information, so the information
arrives intact and in order.

But there is a particular problem on the host end. Since the PC is connected to the host
through its console driver, it is not possible to send it arbitrary data characters. For
instance, if the data contains a Ctrl-Y, then sending it to a VAX/VMS host could cancel the
operation unexpectedly, resulting in a lost or incomplete file. The ability to send arbitrary
data across a communication link is called TRANSPARENCY, and the connected from a
terminal or PC to a timesharing host is generally NOT transparent.

Text files are a special (and common) case, i.e. files that contain only printable characters,
CR, LF, FF, and HT. Most host computers accept all of these characters as data.

An important part of a PC-host file transfer protocol is to overcome these transparency
problems.

Once a PC-host protocol has been designed, it can also be adapted to operate PC-to-PC and
host-to-host.

Two such protocols are Xmodem and Kermit, which we will look at in the coming weeks.

Terminal-to-host connections were the predominant mode of communication for many
years. The first host-host connections were built upon them, with one host tricking the
other into believing it was a terminal. But terminal-to-host connections have certain
intrinsic limitations:

• They operate only point-to-point, and so can connect only two computers.

• Only one user can use a particular point-to-point link at a time.

• They operate at relatively low speeds.

• Connections must be made "manually" each time they are to be used, e.g.
setting communication parameters, dialing up, logging in, etc.

• They are error-prone unless a special error-correcting program is run on each
end (each using the same protocol), and such a program is not always available.

• Connections are not transparent to all patterns of data.

Page 30 COMPUTER NETWORKS

NETWORKS
A network is a physical arrangement, used in conjunction with a set of rules, formats, and
procedures, that allows two or more independently functioning computers to transmit data
-- characters, messages, files, records, commands, transactions, etc -- to each other in a
useful form, usually over special dedicated communication devices and media.

Standards and protocols must exist at many levels to handle problems like error detection
and correction, elimination of lost or redundant data, allowance for multiple users to share
the same communication channel, data conversion, etc. These protocols are usually
implemented in software.

Networks alleviate the restrictions on terminal-to-host connections:

• They can connect more than two computers together.

• Many users can share the same communication medium.

• They operate at relatively high speeds.

• Physical connections are usually dedicated, always ready to be used.

• They include error detection and correction for all applications.

• A wider variety of services may be available.

• Connections are generally transparent to all bit patterns.

Although data communication and networks are the topics of this course, it should be noted
that they can be great wasters of time and money. Why do you, or does your organization,
need data communication? How often must data be transferred, and how much of it? What
resources really need to be shared?

Data communication professionals should always be sensitive to the costs and benefits of
any given approach. Even though a network is a very hot, prestigious commodity, the cost
and pain of network installation is not always worth it. Always consider the alternatives:
terminal-to-host communication, file transfer protocols like Kermit and Xmodem, exchange
of magnetic media (e.g. walking down the hall with a floppy disk, mailing a tape), phone
calls, and even face-to-face human interaction.

For example, let’s compare networks with terminal-to-host connections:

• Networks are more expensive, requiring special, often proprietary, hardware
and software.

• It is not always possible to put computers made by different companies on the
same network.

• Networks sometimes have stringent distance limitations.

• Networks are more complicated to install, maintain, and administer.

• Functions specific to the terminal:

• There is always the need to communicate with some computer that is not on the
network.

Understanding Data Communication Protocols and Software Page 31

But now let’s look on the positive side. Where terminal-to-host communication programs
generally offer only terminal emulation and possibly file transfer, networks generally offer
a wider range of services. These might include:

• Virtual terminal service. Similar to terminal emulation, except the host
machine does not need to know what kind of physical terminal the user has,
what its baud rate is, its character set, its control sequences, etc, and because
the session is error-free and synchronized.

• File transfer. May be invoked explicitly by running a program (similar to
Kermit or Xmodem), or in some cases implicitly, simply by referring to a remote
file by using special syntax in its name (e.g. in DECnet, "COPY
NODEA::FOO.BAR NEW.BAR").

• Electronic mail. Really a special case of file transfer, but the file is a message
to be delivered to particular users on local or remote systems for later reading.
Electronic mail systems allow messages to be replied to, forwarded, etc.

• Remote file access. Treating remote files as if they were local, transparently to
all applications software (e.g. "EDIT NODEA::FOO.BAR"). Typically im-
plemented within the operating system’s file services -- open, close, read, and
write functions.

• Distributed file systems. Files are located on many machines and are accessed
as if they were local, transparently not only to the application software, but
also to the user (no special syntax required in filename).

• Shared devices. Printers, disks, tapes, dialout modems, etc, can be shared by
multiple machines on the same network. The network gives the illusion that
the device is local, transparently to application software.

• Shared databases. Users on different machines can query, perhaps even
update, the same database. Transaction processing (like airplane reservations)
are a good example. Of particular use in a network is a "name server" which is
often queried implicitly when a user refers to the name of a remote system or
user.

The fancier services are possible because the network support is integrated into the
operating system. Thus disk and printer drivers, even portions of the file system, may be
using the network rather than the normal local devices.

NETWORK TOPOLOGIES
To connect a computer to a network, you need:

• A physical interface between the computer and the communication medium,
generally a circuit board that plugs into the computer, and has a connector for
the network cable.

• Software that controls the physical interface (a device driver).

• Software that implements the same network protocols as the other computers
on the network

• And you must be in physical proximity to the network medium.

The physical arrangement of the network is called its "topology". There are several basic

Page 32 COMPUTER NETWORKS

kinds:

Star all nodes connected directly to a central hub (like terminal network).
Bus
all nodes connected to a single, shared cable (like Ethernet). Ring
all nodes connected to a circular wire (a loop, like IBM Token Ring).
Mesh
nodes connected to each other in arbitrary ways (most wide-area nets).

In all but the mesh arrangement, it is a fairly straightforward task to get a message from
one node to another.

Particular technologies are not necessarily tied to particular topologies. For instance,
Ethernet on coax cable is a bus, but there can be star-wired Ethernet based on twisted pair
or optical fiber. In some ways, the choice of technologies is the crucial one, because this
dictates what boards you will plug into your computers, and what software you will run to
interact with these boards. It is often possible, at a later date, to replace the network
cabling with something entirely new, e.g. coaxial cable with fiber, leaving a large
investment in controller boards and software untouched.

Data networks are divided into two major kinds: local area networks (LANs), and wide area
networks (LANs).

LOCAL AREA NETWORKS (LANS)
Local Area Networks are usually found within a building or campus, and have bus, ring, or
star topology. Since wiring is on-premisis and limited distance, special (expensive) media
can be used -- coax cable or optical fiber -- for high bandwidth (3-100 Mbps)

"bandwidth" -- information transferred per unit time, e.g. bits per
sec

and good noise immunity.

Typical services on PC-based LANs include shared disks, shared printers, modem pools,
shared databases, even remote procedure calls (programs with subroutines running on
separate computers). These applications require very fast, relatively noise-free connections,
and LAN software is generally designed on this assumption. When larger hosts are
involved in a local net, wide-area functions like terminal service (remote login), file
transfer, and mail may also be supported.
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----

| | | | | | | | |
A B C D E F G H I

In some local area networks, all nodes share the same transmission medium. How can they
do this without interfering with each other? There are two basic methods:

Frequency Division Multiplexing (FDM)

In "broadband" networks, the cable’s bandwidth is divided into many channels, of different
frequencies, just like CATV cable can carry many channels simultaneously. But TV is a
receive-only device. In a network, each device has separate send and receive frequencies.
Thus, each channel is really two channels, and the network has a "head end" to shift
between the sending and receiving frequencies of each channel. To talk to devices on other
channels, special frequency converters are required for each pair of channels to be
interconnected.

Understanding Data Communication Protocols and Software Page 33

Broadband networks offer high overall bandwidth (in the 300 MHz range), over exactly the
same medium that cable TV uses. But the bandwidth is chopped into relatively slow
channels, about 6 MHz each, and those are often further subdivided. Management of a
broadband network is complicated, involving frequent "sweeps" and tuning, channel
management and assignment, installation of more and more frequency converters, etc. The
trend seems to be away from broadband networks.

Time Division Multiplexing (TDM)

In "baseband" networks are the opposite of broadband. The overall bandwidth is lower --
typically in the 5MHz to 20MHz range. But each station gets to use the entire bandwidth,
rather than a small channel. This means that all stations use the same frequency.
Therefore they must transmit at different times. This is called time division multiplexing.

In the simplest TDM scheme, every station gets a fixed-size time slot. But this is wasteful.
The two most common TDM schemes used in LANs today are those associated with Token
Ring and Ethernet.

Token ring networks are espoused by IBM. Current IBM Token Rings run at 4Mbps. In
these networks, stations are connected in a ring, or "daisy chain". A "token" is circulated
around the ring; only the node that is in possession of the token may transmit (for a limited
amount of time). When transmission is done (or if there is nothing to transmit), the token
is passed to the next node. A drawback of a true ring is that failure of any particular node
(including turning it off) will break the ring. For this reason, real rings are wired in star
fashion, with a passive wire center which automatically closes a relay across
non-functioning nodes.

Ethernet is a more widespread LAN technology, having been adopted by dozens of major
companies. Ethernet requires special coaxial cable (not CATV cable), and runs at 10Mbps.
Ethernet is a "broadcast" network with no central control -- each node may broadcast at any
time. All nodes receive all messages simultaneously. Any node may broadcast when the
medium is not in use. But what happens when two nodes decide to broadcast at the same
time? The messages interfere with each other, and both become corrupted. A typical
medium access mechanism (the one used in Ethernet) is called Carrier Sense Multiple
Access with Collision Detection (CSMA/CD). This means: before sending, check the
medium for a carrier signal. If it’s there, wait till it goes away before transmitting. Then, if
during transmission, interference is detected (listen while sending), stop immediately, and
"back off" a random amount of time, and then repeat the process.

Token ring advocates claim the benefit that the network can never become swamped, and
will therefore always behave predictably. This is important in realtime applications, like
robot control on the factory floor, where actions have to happen at the right time. Ethernet
advocates claim that Ethernets rarely saturate, and if they do, they can be divided into
smaller Ethernets at little performance penalty. We’ll see how to do this in a couple weeks.

TDM LANs like Ethernet and Token Ring have a particular characteristic that frightens
some people away. Since all messages go to all nodes, there is nothing to prevent node A
from reading node B’s messages. Although network interfaces are generally configured not
to accept other people’s messages, they can also be configured to read all messages. In fact,
this is a desirable feature to help the network manager track down problems. But since
"unauthorized" people may be able to configure their boards this way (this is called
"permiscuous mode"), these networks are normally not used in situations where security is
an issue, at least not without a relatively foolproof encryption scheme.

Page 34 COMPUTER NETWORKS

WIDE AREA NETWORKS (WANS)
Wide Area Networks (also called "long haul" networks): Bigger than a building or a campus.
Generally use communication media available only from an external organization, or
"common carrier" -- dedicated leased phone lines or satellite transmission, so the medium is
usually not under direct control of the owner of the computers. Bandwidth is in the
9.6Kb-1.54Mb bps range, compared to 4-10 Mbps for typical LANs, and the connections are
more susceptible to interference that LAN connections.

Typical services include interactive terminal sessions, file transfer, electronic mail, remote
job entry, etc. Topology is typically mesh. Well known examples include Telenet, Tymnet,
Arpanet, Bitnet.

D ----- E ---- I K M --- P ---- Q
/ \ / | / \
/ \ / | / \
/ \ / |/ R
A ----- B ---- F --- H ----- J ---- L
\ / | / | |
\ / | / | |
\ / | / N ---- O
C -------- G

In wide area networks, when there is a path between two nodes, it is for their exclusive use
-- they have control over it, much like a connection between a PC and a computer. The two
nodes don’t have to worry about sharing the physical connection. This type of network is
sometimes called a "point-to-point" network, because it is composed of many point-to-point
connections.

Since the communication media used in wide-area networks are subject to interference and
are relatively slow, the communication software must be designed to detect and correct
errors efficiently and to make the most efficient use of the medium, especially when
satellites are involved.

NETWORKS OF NETWORKS
In practice, many of today’s networks consist of multiple interconnected networks. For
instance, at Columbia University there are many departmental LANs, all connected to a
campus-wide "backbone" Ethernet cable. Some of the big computers on this backbone serve
as "gateways" to wide area networks like BITNET, CSNET, CCNET, etc etc., which in turn
get to hosts at other universities that are gateways into their own local nets. So it is
possible for a user of a PC on a token ring at Columbia (with appropriate software) copy a
file from the disk of a PC on a local Ethernet at Stanford.

BASIC DATA TRANSFER
The most fundamental task of a network is to deliver data correctly. But since the data can
be corrupted in transit, e.g. by electrical interference, the receiver must have a way of
knowing that what it got is what was sent. The method most commonly used is this:

1. Break data up into chunks of manageable size, like 100 or 1000 bytes.

2. Add up the numeric values of all the bytes (or use some other arithmetic
combination of their values). Append the result to the data itself.

3. Uniquely mark the beginning and end of the data.

Understanding Data Communication Protocols and Software Page 35

4. Send it.

The result is a delimited, error-checked piece of data, called a "packet" or a "frame" or a
"block". The receiver knows exactly where it begins and ends, and can differentiate the
data from the block check. The receiver makes the same calculation on the data that the
sender did, and checks for agreement. If the block checks disagree, the frame is known to
be in error, and retransmission can be requested.

ROUTING
In a point-to-point network, how do messages find their way through through the maze to
their final destination? For a small number of nodes, you could connect each node to all
others:

(Draw picture for 1, 2, 3, 4, 5...)

This is impractical for a large number of nodes (combinatorially speaking, this is sampling
without replacement, n things taken 2 at a time, or

binomial coefficient of n and 2 = n!/((n-2)! x 2!) = n(n+1)/2
For large n, this number is ridiculous (n = 10, need 45 wires; for 100 need 4950, for 1000
need 499500), hence a "fully connected network" is usually impractical.

Not connecting each node to every other node means that some kind of "routing" of data has
to occur when two nodes that are not adjacent must communicate; if a node receives a
message that is not for itself, it relays it to (or in the general direction of) the intended
recipient.

MESSAGE SWITCHING VS PACKET SWITCHING
What is the data that we are transmitting through the network? Often, it is some kind of
message, or file. There are two major ways to transmit data through a routing network: in
whole messages (files, electronic mail messages, etc), or in smaller pieces.

Message switching means that a message -- a logically complete piece of data -- is sent as a
whole from one node to the next. Each node stores the whole message until it has been
successfully transmitted to the next. This is called "store and forward" or "message
switching". Early message-switching systems were based on teletype machines and torn
paper tape.

Message switching is akin to batch scheduling on a mainframe computer; each user’s "job"
must wait in a queue for its turn, then it gets the whole CPU for as long as it takes for the
job to complete.

The major disadvantage of message switching is that a user’s message must wait in a
queue to be sent. A very short message may have to wait hours for a long message to
complete. Therefore, response cannot be in "real time", and interactive network applica-
tions (like terminal connection) aren’t possible.

BITNET and USENET are the primary examples of message-switching networks.

Breaking user’s messages up into little chunks, each chunk tagged with
source/destination/user identification, allows many users to share the transmission medium
by "interleaving" these chunks, very much like many users may share the single CPU of a
timesharing computer; for instance, long files may be sent at the same time a user is

Page 36 COMPUTER NETWORKS

conducting a two-way character-oriented dialog. The little chunks are called PACKETS,
and this technique is called PACKET SWITCHING.

Arpanet and the public networks (Tymnet, Telenet, Datapac, etc), along with proprietary
networks like DECnet are examples of packet-switched networks.

THE LAYERED MODEL
We’ve discussed, in a rather unstructured way, some properties and problems and problems
of networks. In fact, this kind of haphazard approach was the basis for many early
networking efforts. After many years of effort, millions of lines of software coding, some
valuable lessons were learned.

(blah blah)...

Potential problems in getting a message from one computer to another within a network
can be resolved by formulating a set of rules, procedures, and transmission formats
specially suited to the particular problem -- in other words, a protocol. If we have
formulated the problems well enough, we can devise protocols that are relatively
independent of each other. The protocols for each problem can be combined together to
form a hierarchy, in which each protocol depends upon the one "beneath" it to do its job.
Each protocol in this hierarchy is called a "layer".

For example -- I go to the showroom to buy a car. The protocol for buying a car is to
negotiate with the salesperson, and then give her some money. I don’t care how she got the
car. She calls upon the next lower layer to do that: the trucker. The trucker, in turn, picks
up cars from the factory, without caring how they were made. At the factory, they put
together the raw materials to form a car. The raw materials, in turn, are delivered by
planes, boats, and trains, from mines, quarries, and oil wells. Each layer does its own job,
unconcerned with what the other layers do, but caring very much how it "interfaces" with
the adjacent layers (getting paid, etc).

There are many different network designs, and there different ideas about how many layers
there should be, and what each should do. After break, and for the rest of the course, we’ll
be looking at a model which is almost universally used for describing any network, even
though very few real networks today follow this model.

THE ISO OPEN SYSTEM INTERCONNECTION REFERENCE
MODEL
Packet switched networking began in the late 1960s with research efforts like the
DoD-sponsored ARPAnet, and corporate networking efforts like IBM’s SNA and DEC’s
DNA (DECnet), both appearing on the market initially around 1974 after some years of
research and development. By 1978, feelings ran high that incompatible networking
techniques were creating barriers between systems of different manufacturers, and the
International Organization for Standardization (ISO) formed a Technical Committee (TC)
charged with developing a "reference model" (RM) for "open systems interconnection" (OSI).

The ISO is a worldwide voluntary federation of national standards institutes established in
1947. Currently, about 88 countries participate in about 160 technical committees and
some 1900 working groups and subcommittees, covering everything from screw threads to
nuclear energy. The USA member body of ISO is ANSI, the American National Standards
Institute.

Understanding Data Communication Protocols and Software Page 37

OSI Technical Committee 97, formed in 1961, deals with computer technology and office
equipment. Two subcommittees (SC) deal with data communications: SC6 for telecom-
munications and information exchange between systems, and SC21 for OSI. By 1980,
within 2 years of its formation, SC21 had formulated ISO Draft International Standard
(ISO/DIS) 7498, "Information Processing Systems Interconnection - Basic Reference Model".
It has since been adopted by the CCITT (International Telegraph and Telephone
Consultative Committee) as Recommendation X.200 (CCITT Recommendations are tan-
tamount to standards).

The ISO Open System Interconnection Reference model (sometimes called ISORM) specifies
a 7-layer communications architecture allowing "open systems" to communicate. The model
is general in nature, and does not specify any particular protocol or technology at any layer.
It only specifies the functions of each layer and the interface between each layer and the
adjacent layers on the same system.

In Europe, ISORM has already taken firm root. Most networks are based on X.25, an
ISORM-conformant networking architecture (X.25 will be explained later). In the USA,
X.25 is used in popular "public" networks like Telenet and Tymnet (and Datapac in
Canada), and proponents of other architectures including vendors like IBM (SNA) and DEC
(DNA), as well as government agencies like DoD’s ARPA (TCP/IP), have all announced
conformance with the ISORM as a goal in future networking development. These
architectures will gradually be supplanted by "open" ISO architecture, allowing diverse
heterogeneous systems to interconnect over a potentially vast worldwide network.

Support for ISO/OSI architecture will probably become mandatory in all networked
computers purchased by the US Government, under the Government OSI Procurement
specification (GOSIP). General Motors Manufacturing Automation Protocol (MAP) and
Boeing Technical and Office Protocols (TOP) are both OSI-based, and are receiving much
attention in the press and from computer vendors like IBM and DEC.

There are also do-it-yourself networks (that arose in the absence of standards bodies or
corporate decrees) like FIDO, UUCP, BITNET, CSnet/Phonenet, each with its own special
story...

WHAT IS A LAYER?
In theory, a layer is a protocol for doing a particular, well-defined, circumscribed function,
along with the hardware and/or software that interprets (implements) the protocol. In fact,
the functions of the ISO layers tend to overlap; the description of each layer reads very
much like the descriptions of all the others. By searching for the minor differences, you can
extract the essence of each layer.

Whatever its function might be, an OSI layer is an "entity" that:

1. communicates with its peer layer on another system,

2. provides services to its superior layer on the same system, and

3. calls upon the services of its inferior layer on the same system.

In OSI terminology, a particular layer, N, is embodied by an "(N)-entity". The layer
immediately above it is an (N+1)-entity (a "service user" of the (N)-layer), and the layer
below it is an (N-1)-entity (a "service provider" to the (N)-layer).

Page 38 COMPUTER NETWORKS

SYSTEM A SYSTEM B
+-------------+ +-------------+
| Layer (N+1) | | Layer (N+1) |
| ^ | | ^ |
+---|---------+ +---|---------+
v	Peer-to-peer communication	v
Layer (N)	<---------------------------->	Layer (N)
^		^
+---	---------+ +---	---------+
v		v
Layer (N-1)		Layer (N-1)
+-------------+ +-------------+

Programmers can think of a layer as a procedure (subroutine) that is called by its upper
layer with some data and other parameters, that sends a message to its peer layer on
another system by calling another procedure (i.e. the next lower layer), and returns some
kind of data or status code.

+-----------+
(N+1)-Layer | (N+1)-PDU | (N+1)-layer delivers its PDU to the (N)-layer

+-----+-----+
|
|

(N)-Layer V
+---------+ +-----------+
| (N)-PCI |----->| (N)-SDU | (N)-layer adds its own protocol information...
+---------+ +-----+-----+

|
V

+---------+-----------+
| (N)-PCI | (N)-SDU | to form an (N)-PDU, which it delivers...
+---------+-----------+

|
|

(N-1) Layer V
+---------------------+
| (N-1)-SDU | ...to the (N-1)-layer, which sees it as an SDU
+---------------------+

A message sent from peer to peer is called a protocol data unit (PDU). It consists of the
block of data (called a Service Data Unit, or SDU) provided by the (N+1)-entity, to which
the current (N)-layer adds some Protocol Control Information (PCI). In order to transmit
its PDU, the (N)-layer passes it to the (N-1)-layer. The process repeats until the lowest
layer is reached; layer N’s PDU becomes layer N-1’s SDU:

(picture here)

Each layer normally communicates with its peer in three phases: connection establishment,
data transfer, and connection release. Each layer is allowed to know the interface only to
its adjacent layers. Thus, each layer hides the details of non-adjacent layers from its
adjacent layers; it is an "interface" in the true sense.

Most layers provide the following services:

• connection establishment

• connection release

• normal data exchange

Understanding Data Communication Protocols and Software Page 39

• expedited data exchange

• synchronization

• error detection

• error recovery

• exception reporting

Each layer has its own address, its own protocol, its own formats.

CONNECTION-ORIENTED VS CONNECTIONLESS
Most OSI protocols are connection-oriented. That means, they proceed through three
phases: connection establishment, data transfer, and connection release. When a
connection is opened, a database is created for the connection, containing information like
the address of the peer, the current sequence number, the flow-control status, and a
retransmission buffer for the most recent (or several most recent) messages. For the rest of
the connection, this database is referred to very efficiently using shorthand "pointers",
much like the file numbers that programmers use after opening a file. Connection-oriented
protocols assure correct and complete peer-to-peer communication. Correctly received
messages are acknowledged. Retransmission of damaged or missing messages can be
requested by sequence number, and duplicates can be detected and discarded based on the
sequence number.

A connectionless protocol does not establish or maintain any relationship between
individual data transfers. There is no sequencing, no database, no acknowledgement.
How, then, can a connectionless protocol possibly work? On its own, it can’t. But it can
occupy one or more of the layers in a complete protocol stack. So long as there is a
connection-oriented protocol above the highest-level connectionless protocol, it can take
care of sequencing and retransmission.

Why would we want a connectionless protocol? Several reasons...

• On a clean, single-user at a time medium, like Ethernet, there’s not much
chance of messages becoming misordered, so the overhead of maintaining a
connection at the datalink or network level can be avoided.

• In a packet-switched network, it is not possible to have a connection-oriented
network layer, because packets will take different routes.

• If the network is totally reliable, then the transport protocol could connec-
tionless.

• etc...

THE OSI LAYERS
So what does all this gibberish about (N)-layers really mean? Basically, it means that each
layer is concerned only with its own functions and its own protocol, and knows nothing
about the protocols used by the other layers. In fact, a particular layer only knows its own
protocol, and what services are provided by the layer immediately below, how to invoke
them, and how to get the results back.

The fact that each layer does not look at the data given to it by the superior layer results in
the most valuable property of layered protocols: any layer can be easily replaced. So long as

Page 40 COMPUTER NETWORKS

a layer does what it is supposed to do and offers the standard interface to the adjacent
layers, its internal operation -- including the protocol it uses with its peer layer -- is an
"implementation detail". This allows the physical medium to be changed without affecting
the network applications, it allows the applications to be changed without concern for the
details of the network, and it allows the operation of the network itself to be changed
without affecting the upper or lower layers.

In practice, the definition of a particular layer is more or less precise depending on its
position in the hierarchy -- the lower the layer, the clearer the definition; the higher, the
more vague.

The seven OSI layers are as follows:
+--------------+

7. | Application | The meaning of the data, the actions to perform, etc.
+--------------+

6. | Presentation | The format of the application data
+--------------+

5. | Session | Application-to-application dialog control
+--------------+

4. | Transport | End-to-end (host-to-host) communication
+--------------+

3. | Network | How to get from end to end, hop-by-hop
+--------------+

2. | Datalink | How make one hop, how to get from node to node
+--------------+

1. | Physical | How to use the transmission medium
+--------------+

The ISO layers were chosen according to certain principles, including:

• Layers are defined so as to group similar functions together.

• Layers are defined so as to minimize interactions across layer boundaries.

• Layers are defined to allow different protocols to be used within a layer without
affecting the layer service definition.

• The number of layers is kept to a minimum consistent with the above
principles.

• Each layer adds to the services of the layer below.

• Each layer requires one or more distinct peer protocols.

• Each layer has boundaries only with the immediately upper and lower layers.

These principles allow the software that implements each layer to be as simple as possible,
and easily replaceable.

Unfortunately, there is also an unstated principle, resulting from the fact that the OSI
committee is comprised of representatives of major corporations that have a large stake in
existing products. This principle is that the model must fit these products. For this reason,
we will see that the actual definitions of each layer are very complicated and tend to
overlap.

Now let’s take a very brief and simple look at the functions of the seven layers of the OSI
model. In the coming weeks, we’ll examine each layer in gruesome detail.

Understanding Data Communication Protocols and Software Page 41

7. THE APPLICATION LAYER

...is concerned with the meaning and function (semantics) of the data being exchanged
between two partners. In other words, the application layer does the actual work that the
user needs done, requiring the user to know little or nothing about the underlying network
or the remote system. Examples include file transfer programs, electronic mail programs,
virtual terminal programs, remote user lookup programs, etc.

To use the file transfer example, the application layer may send messages to its peer like
"Here comes a file whose name is FOO.BAR", and "Here is the contents of the file", and
"This is the end of the file". But suppose that one system uses a different character set, or
has different file formats. Then what?

6. THE PRESENTATION LAYER

...is concerned with the appearance and format (syntax) of the data. This is where
character set translation might be done, or encryption and decryption,
compression/decompression, perhaps (someday) even translation between different natural
languages. The presentation layer provides a "common intermediate representation" of
data, transparent to the application.

In the file transfer example, suppose one host is ASCII-based, and the other uses EBCDIC.
The messages exchanged at the application level will be meaningless unless
ASCII/EBCDIC translation is done -- files will have the wrong name, and their contents
will be gibberish. Furthermore, one system might store files in stream format (lines with
CRLF terminators) and the other in card-image format (80-column records). These
conversions are handled by the presentation layer.

OK, so now two network applications can exchange meaningful messages, whose form and
purpose are clear. But suppose multiple applications are running on the same system
simultaneously. Which system gets which message? How do we keep messages from
getting mixed up?

5. THE SESSION LAYER

The parameters of concern to the OSI session layer involve dialog management: whether
the dialog is full duplex, half duplex, simplex. The session layer also may provide "message
bracketing" or "quarantine" (grouping of messages into a single "atomic" unit -- useful in
database transactions) and other message management functions. And it may be used to
ensure that a session can be continued across an interruption in the underlying transport
service.

OK, so we are able to conduct a dialog with a remote computer, but how do the messages
actually get there?

4. THE TRANSPORT LAYER

...is concerned with the host computer where the partner process is running; it is
responsible for providing a reliable stream of data between the two end systems. Thus it is
called an "end-to-end" protocol -- it "transports" data from end to end (host to host). The
transport layer provides sessions with access to a network in a way that shields them from
specific knowledge about it.

Because of the great variation in network topologies and protocols, the transport layer is

Page 42 COMPUTER NETWORKS

rather complicated, and must perform several distinct functions:

a. Since the underlying network may lose packets, deliver them out of order, or deliver
multiple copies, the transport layer must be responsible for sequencing. It labels outbound
messages (Transport Protocol Data Units, TPDU’s) with sequence numbers, and assembles
inbound TPDU’s into the right order, discarding duplicates and requesting retransmission
of missing ones.

b. Since the receiving system might not be able to keep up with the rate at which packets
are being delivered, the transport layer must include a way for the receiver to tell the
sender to slow down. This is called flow control.

c. On multiprocessing (timesharing) systems, there are multiple processes (jobs, programs)
active at the same time, and more than one of them may be simultaneously using the same
network connection. The transport layer allows each process to use the network connection
without getting the data confused, by "multiplexing" the messages.

(picture of multiplexing here...)

OK, so the host computer is receiving a reliably sequenced stream of packets, and
delivering data to the intended users. But suppose the packets had to travel though a
complicated network to get from one host to the other. How do they find their way through
the network?

3. THE NETWORK LAYER

...knows the route to take to get from one host to the other. When a message arrives at a
particular node in the network, that node knows which node to send it to next. Each node
node has this information, and decides which hop to take next, depending upon its
knowledge of the layout of the network and the prevailing conditions (which nodes are
down, how congested certain routes are).

So now we can can send messages (packets) hop-by-hop through the network. But how is a
message transmitted reliably on each hop?

2. THE DATALINK LAYER

...is responsible for taking each step along the route, i.e. ensuring that messages arrive
intact. This means framing each message unambiguously, and including error-checking
information so that retransmission of damaged frames can be requested.

OK, so now we are transmitting unambiguously delimited, error-checked frames. But
exactly how are they transmitted from one node to the next?

1. THE PHYSICAL LAYER

...knows how to use the physical medium for each hop. The software at this layer knows
the details for controlling the hardware interface to the medium: the RS-232 UART, the
modem, the synchronous line interface, etc. It is responsible for transmitting and receiving
bits on the communication medium in sequence and, in general, converting between this
"featureless" bit stream and a sequence of bytes that can be operated on by the computer.

Understanding Data Communication Protocols and Software Page 43

EXAMPLE
Let’s look at a highly simplified example, using purely hypothetical protocols. Don’t worry
about the details. This is just to give the flavor of what really goes on...

Suppose we have an application which simply sends a short text message from a user on
one system to the screen of another user on another system.

The application is "send a message". The application program is called SEND. The user
types "SEND CHRIS@CU20B Hi There!" to send the message "Hi There!" to the user
named Chris on the system called CU20B.

First, the connection must be established. The application knows that "@CU20B" means
that it must find out the address of CU20B. It calls upon a special subroutine in the system
to look up the address of CU20B in its host tables. Having found it, it constructs a message
of the form:
+------+------+
| user | text |
+------+------+

and calls upon the presentation layer to send it to the specified address as a screen
message. The host address is passed as a parameter.

THE PRESENTATION LAYER looks at the text and translates it, if necessary, to some
"canonical format" suitable for transmission (for instance, from EBCDIC to ASCII), and
calls upon the session layer to send it to the specified address as a screen message.
+------+-----------------+
| user | translated text |
+------+-----------------+

THE SESSION LAYER (in this case) does nothing (there’s not really any dialog to
manage...)

THE TRANSPORT LAYER adds sequencing information and a transport address (which
identifies the user on the end system) and passes the resulting TPDU to the network layer
for delivery (in this case, there’s only one TPDU, but if the message were long, there could
be multiple TPDU’s whose sequence must be assured):
+----------+--------+---------------------------+
		"data"		
*	* +------+-----------------+			
sequence	TADDR	user	translated text	
	+------+-----------------+			
+----------+--------+---------------------------+

Note that the TPDU consists of a sequence number and some data that is "hidden". Each
layer treats the upper layer’s PDU as featureless data, and adds a new "layer of clothing" to
it.

THE NETWORK LAYER knows how to get to the given address; it adds the destination
address to the PDU and calls the datalink layer to send out the appropriate path, which
may include any number of intermediate routing nodes:

Page 44 COMPUTER NETWORKS

+---------+--+
| | "data" |
| +----------+------------------------------------+ |
*		+------+-----------------+				
address	sequence	TADDR	user	translated text		
		+------+-----------------+				
+----------+------------------------------------+						
+---------+--+

THE DATALINK LAYER sends the message from one point to the next in the path, in a
form suitable for transmission, and for error detection and correction, i.e. as a datalink
frame:
+-------+--+-------+-----+
	"data"		
* +--+ *	*		
begin	(all the fields above...)	check	end
+--+			
+-------+--+-------+-----+

and transmits it via THE PHYSICAL LAYER to the next node in the network.

When the datalink frame reaches the next node, that node’s datalink layer checks the block
check. If it is bad, retransmission is requested. The process repeats until the message is
transmitted successfully (or until the limit on retransmissions has been exceeded, in which
case an unrecoverable error is reported). Once transmission is successful, the datalink
layer removes its "clothing" from the frame and passes the "hidden data" up to the network
layer.

In this manner, the packet travels through the network. At each node, the network layer
looks at the address and asks "is this for me?". If not, the network layer figures out
(somehow) which node to send it to next on its journey to the destination system, and
passes the packet back down to the datalink layer to be transmitted on the appropriate
line. The process repeats until the packet reaches the destination system.

At the destination system, the network layer peels off its protocol information and gives the
remaining data to the transport layer, which examines the sequence number (its own
protocol information) to make sure that no previous packets have been missed (if they have,
the transport layer requests the corresponding transport layer to retransmit the missing
packets), and then strips the sequence number. If the message was long enough to have
been split into multiple packets, the transport layer will assemble them in the right order.
The resulting sequenced data is provided them to the session layer.

The session layer reads and strips the socket number from the packet and feeds the data to
the appropriate process, in this case a screen message handler, which embodies the
presentation and application layers. The screen message handler knows that the
remaining part of the message contains a user name and a message. It does any necessary
format conversion on the message itself (presentation layer), and finally the user Chris sees
the message "Hi There!" on her screen (application). Then the application transmits a
confirmation to the originator of the message through the network in exactly the same
manner as the original message was transmitted.

Understanding Data Communication Protocols and Software Page 45

Application - - - "Hi There!" - - - > Application
| ^
v |

Presentation - - - Let’s talk ASCII - - - > Presentation
| ^
v |

Session - - - Nothing to do! - - - > Session
| ^
v |

Transport - - - Seq number, TADDR - - - > Transport
| ^
v |

Network Network Network Network Network
| ^ | ^ | ^ | ^
v | v | v | v |

Datalink Datalink Datalink Datalink Datalink
| ^ | ^ | ^ | ^
v | v | v | v |

Physical------>Physical------>Physical------>Physical------>Physical

Page 46 COMPUTER NETWORKS

Understanding Data Communication Protocols and Software Page 47

3. THE PHYSICAL LAYER
Physical layer entities are connected by a physical medium. Thus the physical layer is the
only one that communicates DIRECTLY with its peer.

The OSI physical layer provides the MECHANICAL, ELECTRICAL, FUNCTIONAL, and
PROCEDURAL means to ACTIVATE, MANAGE, and DEACTIVATE physical connections
for BIT TRANSMISSION between datalink entities. What does all this mean?

To interconnect a wide variety of computers and devices, physical layer standards are
required in four areas (sorry for the list!):

1. MECHANICAL: Dimensions of plugs, configuration and assignment of pins,
etc., e.g. RS-449 (9 and 37 pin), ISO IS2110 (25 pin).

2. ELECTRICAL: Voltage levels or frequencies on wires, etc. E.g. RS-232-C,
CCITT V.24, V.28.

3. FUNCTIONAL: correspondence between electrical signals and data or control
information, e.g. RS-232-C, CCITT X.24.

4. PROCEDURAL: rules that apply to the interaction between the two physical
entities, distinction between data and control information, sequence of events,
etc., e.g. RS-232-C, Hayes AT command set, CCITT X.21 and X.28.

The procedural aspects include mechanisms to:

1. ACTIVATE a physical connection, i.e. to establish a circuit between adjacent
computers or devices

2. MANAGE the connection, e.g. monitor the circuit for errors or unexpected
disconnection

3. TRANSMIT BITS on the medium, in sequence, so that they are received in the
same order in which they are sent.

4. DEACTIVATE or relase the connection when it’s no longer needed.

It is NOT the responsibility of the physical layer to correct errors, recover from deadlocks,
or to manipulate the data in any way. In fact, the physical layer should be entirely
unaware of the nature of the data it is transferring. The data should be seen only as a
featureless stream of bits. But in reality, matters aren’t necessarily so clearcut.

CIRCUIT ESTABLISHMENT
There are several kinds of connections over which data communication may take place:

1. Dedicated point-to-point links, such as leased phone lines.

2. Dedicated shared links, such as the Ethernet bus. When links are dedicated,
each station can "see" its partner. In these cases, the physical address of the
circuit is the same as the address of the controlling device. These circuits are
permanently established and always available for use, in which case they need
not be established or released at the physical level.

Page 48 THE PHYSICAL LAYER

3. Multidrop (multipoint) links. In "multidrop" links, any pair of stations may
establish a connection, but may transmit only when "polled" by the "master" of
the circuit. In that case, the physical layer must provide the datalink layer
with the means to uniquely identify the destination of a message.
"Master" -----+-----+-----+-----+-----+-----+-----+-----

| | | | | | |
Stations: 1 2 3 4 5 6 7 ...

4. Circuit-switched links. A switched circuit is one in which a "call" establishes
an electrical connection between two stations, for their exclusive use until the
connection is released. There are two kinds:

a. DIGITAL, i.e. designed for use by computers, and therefore fully
automated. A "virtual call" mechanism is provided, in which a
dedicated physical link is established by means of commands to
switching equipment imbedded in the network. This is the method
used in X.21, described below.

b. DIALUP through the voice telephone system, using modems. In this
case, connections are normally made manually, by a person dialing the
phone. But some modems have an "autodial" feature which produces
the same effects (transmits the same signals) as manual dialing. In
this case, the physical layer may support the dialing and answering
methods used by the particular modems, for instance the Hayes AT
command set and responses.

In most cases, the software must still "open" and "close" the circuits, if only to provide an
efficient communication path between itself and the communication device, to associate the
communication software with the device driver, etc. The process of opening a circuit often
requires setting of communication parameters to allow the interfaces on both ends to
communicate.

CIRCUIT DEACTIVATION
Deactivation, clearing, or release, of a circuit generally means that the software "closes" the
"file" associated with the communication device, and if necessary, to terminate, or hang up,
the call which established the connection. Any resources that were devoted to the
connection are released for use by subsequent connections.

CIRCUIT MAINTENANCE
During the data transfer phase, the physical layer is responsible for monitoring the device
for several special conditions:

• Data ready

• Data transmission error

• Data overrun

• Device available/unavailable for transmission

• Disconnection

In most cases, it is up to the higher layers to handle these conditions. The physical layer
merely reports them. In other cases, the physical layer may do some of the work itself.

Understanding Data Communication Protocols and Software Page 49

CIRCUIT PARAMETERS
Several characteristics of the circuit are of interest to the physical layer. These must be
known or established at the time the circuit is opened. In many kinds of circuits, two
devices cannot communicate at all unless certain of these basic parameters agree at both
ends. Three important parameters are speed, parity, and line access discipline. They apply
mostly to point-to-point connections.

SPEED

The physical signalling rate must agree at both ends, so that the receiver can identify the
transmitted bits correctly. There are two major techniques for achieving this agreement.
In one, the two ends support a variety of built-in rates, and these are manually set to be the
same at each end. In the other, the transmission itself includes synchronization
information. We will look at some examples shortly.

PARITY

In US ASCII, only 7 out of 8 bits are used for data. The 8th bit is sometimes used for error
detection. The transmitter of a byte will set the 8th bit to 0 or 1, depending on how many
1-bits are in the 7 data bits. When the 8th bit is used this way, it’s called the parity bit.
The receiver checks the parity bit against the data, and if they don’t agree, it knows the
character was received in error.

There are 5 possible types of parity:

Even Parity bit set to make total number of 1-bits even. Odd
Parity bit set to make total number of 1-bits odd. Mark
Parity bit always set to 1. Space
Parity bit always set to 0. None
No parity calculation is done, 8th bit available for data.

ANSI X3.16-1976 Defines even and odd parity, and specifies that ODD parity should be
used with 7-bit ASCII in synchronous communication, and EVEN parity should be used
with 7-bit ASCII in asynchronous communication, and that NO parity may be used with
8-bit data.

When parity is in use:

• Errors can be detected, but not corrected, by the receiver.

• 8-bit binary data cannot be transmitted in byte form.

It sometimes happens that one device uses parity and another does not. In other cases,
some device situated between the two communicating devices uses parity. To communicate
in these situations, the connection must use the required kind of parity.

ACCESS TO MEDIUM: "PLEX"

We have seen how data is transmitted by the physical layer. But WHEN is the data to be
transmitted? It turns out that because of the characteristics of the devices that are
communicating, or of the medium that connects them, it is not always possible for a device
to transmit whenever it wants to.

There are two ways of deciding when to transmit:

Page 50 THE PHYSICAL LAYER

• The datalink layer gives the physical layer bits to be transmitted, and the
physical layer transmits them immediately. Thus the datalink layer decides
when to transmit.

• The physical layer has some knowledge of the medium which is shielded from
the datalink layer, and therefore decides on its own, and so needs a buffer of its
own.

Or some combination of the two -- the borderline is not always clear. The rules for when to
transmit are called a "LINE DISCIPLINE". There are several possibilities.

If communication is always one way (like a radio broadcast), we call the connection
"SIMPLEX". This is rarely done in data communication.
(...picture...) (one wire) A -------> B (ONE-WAY)

(A can transmit any time, B can never transmit)

If data can go both ways, that is if TWO devices can transmit on the same physical
connection, we call the connection "DUPLEX". If transmissions can go both ways
simultaneously, we say the connection is "FULL DUPLEX" (TWO-WAY SIMUL-
TANEOUS). But if they can go only one way at a time, it is "HALF DUPLEX" (TWO-WAY
ALTERNATE).
(...picture...) (one wire possible for half duplex, 2 needed for full)

It is also possible to connect many computers together over one connection, and the word
for this is "MULTIPLEX".

Half Duplex

In HALF DUPLEX connections, each end must tell the other when it may transmit.

In terminal-to-host connections (e.g. IBM mainframe), the terminal grants access to the
computer by sending an ASCII CR, and the computer grants permission to the terminal by
sending an ASCII XON (Ctrl-Q) or other special control character. If one side sends to the
other before permission is granted, characters will be lost, because the other side isn’t
listening.

The act of terminating transmission with a special character which grants the other side
permission to transmit is called a "line turnaround handshake".

The physical layer is supposed to be concerned only with bits, not characters. It’s not
supposed to look at the data at all. So this kind of line discipline would seem to belong in
the datalink layer (right?).

But on the mainframe side, the software never gets the characters at all until the
communication front end sees the CR. So it really happens in the device. Conversely, after
the IBM mainframe has transmitted its lines or screens, it is its next READ request that
triggers emission of the XON, transparent to the software. Since the software never sees
the line turnaround characters, we might as well consider this line discipline a physical
protocol.

Understanding Data Communication Protocols and Software Page 51

Full Duplex

In FULL DUPLEX connections, both sides can transmit simultaneously. This means:

• Neither side needs permission to send.

• Remote computer can echo your typing.

• Buffer overruns can be prevented.

Preventing buffer overruns is called "FLOW CONTROL". When the connection is full
duplex, then the receiver can send a special character to the sender whenever its buffer is
getting too full, and the sender will stop until the receiver sends another special character
to tell it to resume sending. These special characters are called:

XOFF ASCII Control-S (stop sending)
XON ASCII Control-Q (resume sending)

and this type of flow control is called XON/XOFF.

Some full duplex systems support XON/XOFF and others don’t. It only works if both sides
do it.

Is XON/XOFF a physical or datalink level mechanism? Since the data is being examined
for specific characters, it would seem to belong in the datalink layer. But often XON/XOFF
is implemented in the device driver, transparent to the datalink-level software. So maybe
it’s at the physical level after all?

Multiplex

This is another kind of "plex" in which many computers can share the same transmission
medium. How can they do this? Two ways: frequency division multiplexing (FDM), where
each circuit is assigned its own frequency range, much like television or radio channels. A
prominent example is the "broadband" network built on cable-TV technology.

The other way is called "time division multiplexing" (TDM), in which each station takes
turns using the medium. There are many schemes, including:

• Multidrop, in which a "master" station controls all the other stations, granting
permission to transmit to one at a time.

• CSMA/CD as in Ethernet. The physical layer senses carrier and detects
collisions, reporting these conditions to the datalink layer, which decides when
to transmit.

• Token Ring, in which the owner of the token gets to transmit for a limited
amount of time, and then must give up the token.

Page 52 THE PHYSICAL LAYER

DATA TRANSMISSION
The physical layer is responsible for delivering BITS to their destination in the same order
in which they were transmitted. Bits are the "SERVICE DATA UNITS" of the physical
layer. These bits must be converted to some kind of electrical or other signal for
transmission and, obviously, the transmitter must use the SAME ENCODING as the
receiver.

How do we transmit a bit on the communication medium? For example, one voltage is used
for binary 0, another for 1. These voltages are called "space" and "mark", respectively.
Space (0) may be +12V, and mark (1) is -12V. There must also be a convention to show that
the connection is active, but no data is being transmitted, i.e. the line is "idle". An absence
of voltage means there’s no transmission at all, the connection is inactive.

Another method is to modulate a carrier wave in some way, for instance by modifying its
frequence (FM), amplitude (AM), or phase (PSK).

The capacity of a transmission medium is called its "BANDWIDTH", usually measured in
bits per second, sometimes correctly called "BAUD", sometimes incorrectly. Baud is
equivalent to bits-per-second if a single signalling element can have only two states,
equivalent to 0 and 1. Some signalling schemes can represent more than two states in one
signal. For instance, if there were four voltages, rather than 2, then one signal could
represent any of four values (00, 01, 10, 11), and 1 baud would be 2 bits/sec. In general,

1 baud = log2(n) bits/sec
where n = number of values a signalling element may assume.

But a "BYTE" is the smallest amount of data that can be moved into and out of the
computer’s memory; on most computers, a byte has 8 bits. A byte is used to represent a
"character" in a particular character set, like ASCII or EBCDIC, or (part of) some other
quantity: a number, an instruction, an address, etc.

Since computers can transfer data only one or more bytes at a time, data communications
also tends to be byte-oriented, transmitting a byte at a time, rather than bit-oriented.

How to transmit a byte on wires? Two ways, parallel and serial. The ISO physical layer
allows either way.

PARALLEL: All the bits of a byte at once, each on its own wire.
Device A Wires Device B
Bit 0 ------------------> Bit 0
Bit 1 ------------------> Bit 1
Bit 2 ------------------> Bit 2
Bit 3 ------------------> Bit 3
Bit 4 ------------------> Bit 4
Bit 5 ------------------> Bit 5
Bit 6 ------------------> Bit 6
Bit 7 ------------------> Bit 7

Control ------------------> Control

The control wire has the mark voltage whenever the other 8 wires contain data, so that the
receiver knows when to "read" them.

Advantages:

• High bandwidth

Understanding Data Communication Protocols and Software Page 53

• Simple logic

• Obvious delimitation of bytes

Disadvantages:

• High cost over long distances (many wires),

• Propagation delay varies between wires, so bits might not arrive together.

• If communication to be 2-way simultaneous, need 2x as many wires, otherwise
data can only go one way at a time.

Parallel transmission usually used only for very short distances, such as between devices
within a computer, or between computer and printer, but it is rarely used in data
communication.

SERIAL TRANSMISSION
In serial transmission, the bits of a byte are sent one after another, on the same wire.

So the physical layer must provide the mapping between bytes and bits. The first question
that springs to mind is, what order to send them in?

In character or byte-oriented transmission, it is customary to transmit the least significant
(low-order) bit first, and the most significant (high order) bit last. This is specified in ANSI
X3.15-1976 "Bit Sequencing of ASCII in Serial-by-bit Data Interchange."

The next question is, how does the receiver distinguish the bits from each other, and how
does it know the boundaries between the bytes?

Two ways: Framing (asynchronous) and Timing (synchronous)

ASYNCHRONOUS TRANSMISSION
Serial, asynchronous transmission is the most widely used form of data communication.
It’s designed for use between two devices that are not synchronized, for instance a computer
and a terminal controlled by a human. The computer cannot know when the human will
type a character. That’s why it’s called asynchronous.

So when a character arrives at the computer, how does the computer know?

Bytes are delimited by framing them between a "start bit" (space) and a "stop bit" (mark).
When no transmission is occurring, the line contains a steady mark voltage. When this
voltage changes to space, the receiver knows that the voltage should be sampled for the
next 8 bit times to form a character. If the next bit is not a mark, then a "framing error" is
reported.

----- 8-bit byte -----
+---+
| 1 | x | x | x | x | x | x | x | x | 0 |
+---+

^ ^ ^ ^
| | High Order data bit | | Start bit
| Stop Bit | Low order data bit

This format is specified in ANSI X3.16-1976, "Character Structure and Character Parity

Page 54 THE PHYSICAL LAYER

Sense for Serial By-Bit Data Communication in ASCII". As you can see, 10 bits are
required to transmit an 8-bit byte asynchronously. Thus 10 baud is equivalent to 1
character per second.

There are also encodings that are not based on ASCII, for instance a 5-bit start/stop code
called BAUDOT, once widely used with Teletypes, and still used by Telecommunication
Devices for the Deaf (TDD).

Here’s what asynchronous transmission of ASCII "C", 67 decimal, looks like:
+---+
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | ---->
+---+

^ ^
| High Order data bit | Low order data bit

|<------------- data bits ------------->|

0 1 0 0 0 0 1 1
+12V +----+ +----+----+----+----+ +----+

| | | | | |
0V - - - - - - -|- - - - -|- - - - - - - - - -|- - - - -|- - - - - - -

| | | | | |
-12V --------+----+ +----+ +----+----+ +--------->

idle stop start idle
bit bit

^^^^^^^^^^^^ ^ ^ ^ ^ ^ ^ ^ ^ ^^^^^^^^^^^^^
16X sampling 1X sampling 16X sampling

What is a bit time? How does the receiver know at what intervals to sample the line?
Answers:

1. Both ends must be set to exactly the same speed in bits per second (baud).

2. Bit time = 1/bps (example: 300 baud bit time is 1/300 = .00333 sec).

3. During idle period, receiver samples much faster than baud rate to detect
leading edge of start bit. Then, halfway through 1 bit time, it samples once
per bit time, to hit the "middle" of each bit.

In async transmission, baud rates MUST match. Otherwise, the receiver will sample each
bit multiple times, or skip bits altogether, and therefore read the data incorrectly. There
will also be a very high number of framing errors, which allows software to detect that
something is amiss.
(show erroneous sampling on picture...)

In most cases, the encoding for, and transmission of, bits on the physical medium is
handled by a hardware device like a UART, USRT (Universal (A)Synchronous
Receiver/Transmitter), modem, or Ethernet controller, and therefore the software need not
be concerned with the details. Typically, the physical layer software simply reads and
writes bytes from and to the device controller, usually via the services of the device driver.
Data is transferred, and any physical-level errors that occur (like overruns, framing errors,
etc) are reported through the device flag registers.

Understanding Data Communication Protocols and Software Page 55

SYNCHRONOUS TRANSMISSION
Asynchronous communication uses a single method to identify data bits and to frame data
bytes, namely the start and stop bits. But these 2 bits add 20% transmission overhead to
each byte.

In SYNCHRONOUS communication, two separate methods are used for bit identification
and byte delimitation. Bits are identified like in parallel transmission, via a separate
"control" signal. Except in this case, the control signal is driven by a clock, and pulses
regularly. The receiver reads a data bit each time the clock pulses.

Start and stop bits are unnecessary, so there need be no interruption between bytes. So
how does the receiver know where one byte ends and the next begins? A special "synch"
character (usually ASCII SYN with 8th bit on, 10010110) is used.

Initially, the receiver goes into "SYNC SEARCH mode" looking for this pattern. In this
mode, it ignores all data that is NOT a SYN. When it finds a SYN, it turns on its
"synchronization achieved" flag, and presumably the software sees this and takes it out of
Sync Search mode, which now means it treats each group of 8 bits as a distinct data byte.

To acheive synchronization, usually 3-5 SYNs are sent in a row -- subsequent SYNs are
discarded by receiver hardware. This is because (a) it is fairly likely that the first SYN will
be mangled, (b) it is not unlikely that a SYN pattern can be found across two data bytes.
000011101010110010110100101101001011000010010110011010110011000011010101000

^ ^ ^ ^ ^ ^ ^ ^
SYN SYN SYN Data starts here

Advantages of synchronous communication include:

• High bandwidth can be achieved because bits arrive at a steady predictable
rate, and there’s no per-character overhead.

• Modems using modulation techniques dependent on a constant data flow can be
utilized. These modems are more expensive, but can achieve much higher line
speeds (maybe 4 times higher).

• Transmission need not be byte-oriented.

But synchronous transmission has several intrinsic complications:

• What if there is noise, or momentary failure, of the transmission medium? The
two sides might become unsynchronized. But there’s no way for the physical
layer to know this. It simply feeds (what it believes to be) bytes to the datalink
layer. The datalink layer must figure out for itself when the bytes stop making
sense.

• What if SYN itself occurs in the data? The synchronous receiver must be "told"
which mode to be in: "sync search" (unsynchronized) or "data" (synchronized).
It is up to datalink software to determine when there have been transmission
errors or synchronization has been lost.

• What if the receiver loses synchronization, and goes into sync search mode?
How does the sender know to start sending SYNs?

• What does the transmitter send when the software has not provided it with
data? The clock pulses constantly, once per bit time. This implies that the

Page 56 THE PHYSICAL LAYER

software must constantly feed bytes to the transmitter. Usually the SYN
pattern is sent continuously when there is no data to send; this helps to keep
the two ends synchronized. This poses some problems for datalink software.
When SYNs might appear inside the message -- are they data, or idles? The
receiver can’t tell the difference, but the sender can find out when this happens
by catching "underrun" interrupts from the interface ("you didn’t feed me data
fast enough!"). To complicate matters, the synchronous interface, when in data
mode, can also be put into "strip sync" mode, which tells it to discard all
arriving SYNs.

EXTENDING PHYSICAL CONNECTIONS
Physical connections may be extended in many ways, depending on the medium: modems,
line drivers, repeaters, microwaves, satellites, networks, etc. The key point is that the
electrical characteristics at each end is the same. If some conversions are done in order to
the extend the distance, they are undone before the signals reach their final destination.

We will see in the coming weeks that there are ways to extend networks at the datalink
and network levels as well, each with its own advantages and limitations.

SOFTWARE
On most computer systems, the software to operate at the physical level is quite simple,
consisting mostly of OPEN, READ, WRITE, and CLOSE statements. The OPEN statement
includes the name of the communication device, e.g.
100 OPEN "COM1:1200,S,7" AS #1 (IBM PC BASIC)
fd = open("/dev/tty06","rw"); (UNIX C)

The file system looks up this filename and calls in the appropriate device driver. From this
point, READ, WRITE, and CLOSE calls simply invoke the device driver, e.g.
READ #1, X$: CLOSE #1 (IBM PC BASIC)
r = read(fd,&x,1); close(fd); (UNIX C)

However, most high-level programming languages do not include access to the "finer
points", for instance sampling the device registers or modem. This usually requires
assembly language.

Furthermore, the communication device drivers included in most operating systems are
poor performers. For example, the IBM PC’s COM driver does not keep up with input
faster than about 1200 bps, and it does not provide an option for XON/XOFF flow control.
Yet the IBM PC hardware is perfectly capable of speeds of 56Kbps or greater. For this
reason, many PC communication software vendors replace the PC’s COM driver with their
own, "STEALING" the communication device INTERRUPT from the operating system by
substituting its own device handler address into the system’s INTERRUPT VECTOR, and
doing its own buffering and flow control. These must be restored to their previous state
upon connection release, or else the device would be unusable by subsequent processes.

Understanding Data Communication Protocols and Software Page 57

EXAMPLES OF PHYSICAL PROTOCOLS
We’ve discussed the functions of the physical layer: circuit establishment, maintenance,
and release, and data transmission on the electrical level. Now we’ll look at several
physical-level protocols to see how they perform these functions.

(*** Pass around an RS-232 Connector ***)

EIA STANDARD RS-232-C
EIA Standard RS-232-C (and CCITT V.24 in Europe) specify the circuits and voltages
required for SYNCHRONOUS and ASYNCHRONOUS SERIAL communication. There are
25 circuits, and therefore a 25-pin connector is required. RS-232 does not describe the
mechanical configuration of the connector. For many years, this was a ’de facto’ standard,
which became formalized by the ISO in 1980 (about 15 years after the fact) as ISO
International Standard 2110. 37-pin and 9-pin connectors are specified in EIA RS-449 and
ISO 4902. We’ll look at the 25-pin configuration.

Circuits are provided for data transfer, connection control, and gounding. Each circuit is
assigned to a particular pin. A minimal duplex connection uses:

Pin 2: Transmitted data
Pin 3: Received data
Pin 7: Signal ground (reference ground for the voltages on other pins).

These three wires are sufficient for transmission of data in both directions. What are all
the other 21 RS-232 circuits for? They fall into several categories:

Circuit establishment and maintenance
Timing for synchronous operation
Line discipline
Protective ground
Undefined

We’ll look mainly at asynchronous communication...

Six of these signals are to allow Data Terminal Equipment ("DTE") such as a computer or
terminal, to coordinate its operation with Data Communication Equipment ("DCE"), so that
each device knows that the other is turned on, functioning, etc. RS-232-C assumes that
DTEs are always connected to DCEs, and not to other DTEs.

A modem (MOdulator/DEModulator) is a DCE that converts the discrete "digital" RS-232-C
signals output from a UART and converts them to "analog" signals for transmission over
telephone connections as if they were audible voice. One modem is in "originate" mode and
transmits on a predefined frequency, and the other is in "answer" mode and transmits on a
different frequency. Each modem knows to listen for the other’s "carrier" signal at the
agreed-upon frequencies.

Here are the modem signals:

Pin 20 DTR (Data Terminal Ready)
The DTE (terminal, PC) tells the DCE (modem) that it’s turned on.

Pin 6 DSR (Data Set Ready)
The DCE (modem) tells the DTE (PC, terminal) that it’s turned on.

Pin 8 DCD (Data Carrier Detect)
(Also called CD, and RLSD - Received Line Signal Indicator) The DCE
tells the DTE that it is receiving the other DCE’s carrier.

Pin 4 RTS (Request to Send)

Page 58 THE PHYSICAL LAYER

The DCE asks the DTE’s permission to send it some data.
Pin 5 CTS (Clear to Send)

The DTE grants permission to the DCE to send data.
Pin 22 RI (Ring Indicator)

The DCE tells the DTE that someone is calling it up.

Many of the RS-232-C circuits are largely unused. For instance, 5 of them are "secondary"
versions of primary TD, RD, RTS, CTS, and CD, to allow two communication channels to
share a single interface connector. Has anyone ever heard of a connection that actually
used these signals? (** yes **)

A connection between 2 computers using asynchronous modems looks like this:
--

(originate) (answer)
DTE1 wires DCE1 Phone Lines DCE2 wires DTE2

SG 1 ------- 1 1 ------- 1

TD 2 ------> 2 2 <------ 2

RD 3 <------ 3 3 ------> 3
<------One-Way Carrier Frequency

RTS 4 ------> 4 4 <------ 4

CTS 5 <------ 5 5 ------> 5
Other-Way Carrier Frequency---->

DSR 6 <------ 6 6 ------> 6

SG 7 ------- 7 7 ------- 7

DCD 8 <------ 8 8 ------> 8

DTR 20 ------> 20 20 <------ 20

RI 22 ------> 22

--

Here is a typical RS-232 physical protocol:

1. User 1 calls the phone number of DCE2.

2. DCE2 "hears" the ringing and asserts (turns on) RI to DTE2.

3. DTE2 tells DCE2 that it should answer the call by asserting DTR.

4. DCE2 sends its carrier signal to DCE1.

5. DCE1 detects carrier and asserts DCD to DTE1.

6. DCE1 sends carrier to DCE2.

7. DCE2 detects carrier and asserts DCD to DTE2.

8. Now DTE1 and DTE2 both know they’re connected together.

9. DTE1 and DTE2 can exchange data over their TD and RD circuits. This data
will be modulated and impressed upon the appropriate carrier wave.

10. When user1 is done, she causes DTE1 to turn off DTR.

Understanding Data Communication Protocols and Software Page 59

11. DCE1 stops sending carrier and hangs up the phone.

12. DCE2 turns off CD

13. DTE2 turns off DTR.

14. DCE2 stops sending carrier, and hangs up the phone.

Some modems are HALF DUPLEX. This means that instead of dividing the analog
frequency spectrum into two carrier bands and using both at the same time, each one uses
the full bandwidth. But to do this, they have to take turns, which means they can’t let both
DTEs transmit at the same time. The modems and computers coordinate line access using
the RTS and CTS signals, which are handled by software at the physical layer.

If any component of a modem connection stops working, then all the other components will
find out automatically, and the connection can be released:

1. If DTE1 crashes, its DTR goes off, so DTE1 stops sending carrier, DTE2
notices this and turns off DCD, so DTE2 knows the connection is broken, and
it turns of DTR so the modem can accept the next call.

2. If DCE1 stops working, it will stop sending carrier, so that DCE2 and DTE2
will find out, and its DSR and DCD signals will go off so DTE1 will know too.

Similar reasoning applies when DCE2 or DTE2 stop working. The only thing that does not
happen automatically is establishment of the connection: someone has to dial the phone.

SYNCHRONOUS CONNECTIONS
On the physical level, synchronous connections use the same RS-232 circuits as
asynchronous, plus a few in addition. The most important are:

Transmission Signal Element Timing (DTE to DCE), pin 24 (DA) Transmission Signal
Element Timing (DCE to DTE), pin 15 (DB) Receiver Signal Element Timing (DCE to
DTE), pin 17 (DD)

These signals allow the transmitter to include clock pulses on a separate circuit from the
data, so the receiver will know when to sample each bit. The two different transmit leads
allow either the DTE or the DCE to provide the clock pulse.

SMART MODEMS
The RS-232-C standard includes all the facilities needed for automatic answering of dialup
data calls, but there is no provision for automatic calling. In fact, there is no widely
accepted "official" standard for automatic dialing of telephones. (There is a standard,
RS-366-A, 1979, which is not widely applied.) Thus RS-232, when used in conjunction with
dialed phone connections, requires a human operator to dial the number and detect
whether the response is:

1. no answer

2. busy

3. a voice

Page 60 THE PHYSICAL LAYER

4. data carrier

and, in the last case only, to activate the RS-232 physical protocol.

Many modern modems include a command language to allow the DTE to issue dialing,
hangup, and mode-setting commands. After connection is established, command mode is
usually disabled, except perhaps for a special escape sequence. Most popular command
language is Hayes AT command set (ATD, ATH, etc), and has assumed the stature of ’de
facto’ standard, imitated by many other manufacturers, and supported by most
asynchronous communication software. The key commands are:

AT Attention, precedes most commands ATDnumber
Dial the number (transmit at ORIGINATE frequency) ATS0=1
Prepare to answer a data call (transmit at ANSWER frequency) +++
Escape back to Hayes command interpreter ATH
Hang up the phone

Character responses indicate whether the call was completed (CONNECT), BUSY, no
answer, etc. If the call is completed, RS-232 signals are asserted automatically, in
accordance with the RS-232 protocol. Thus software which can send and receive characters,
and which can monitor and control the key modem signals, can activate, utilize, and
deactivate a physical connection, without human intervention.

Is this a physical protocol? Even though it’s dealing in characters, the characters are not
being transmitted between the two DTEs, but rather between the local DTE and the local
DCE. They are used to establish the connection between the two DTEs. Therefore, it’s a
physical level protocol.

SOFTWARE
A great body of software operates at the RS-232 physical level. This includes most popular
ASYNCHRONOUS COMMUNICATION PROGRAMS. They typically include commands to
dial Hayes or other modems, to monitor and/or control modem signals like DTR, CD, etc, to
send characters in either direction, and to terminate the connection when done.

Additional protocols are often built on top of this physical base. For instance, a
TERMINAL EMULATOR follows a kind of "protocol" when interpreting a predefined set of
escape sequences sent by the host computer.

Software that operates purely at the physical level will find itself doing not only terminal
emulation, but also "human emulation". For example, many software packages include a
"SCRIPT LANGUAGE", which allows routine sorts of interactions between a person and a
computer to be programmed -- the computer sends what the person would have typed, and
looks for the responses that the person would have looked for. When such a script includes
control of AUTODIALERS, one computer can call another up in the middle of the night and
have extended chit-chat, without any human assistance, thus rendering humans obsolete.

Still, the occasional functioning human may want to move data from one computer’s disk to
another’s. This may be done at the physical level using a procedure called "RAW
DOWNLOAD". If you have a PC doing terminal emulation, then it is copying characters
that arrive at the PC’s communication port onto the screen. If it can do that, then it can
also copy them to the PC’s disk. If you cause the remote computer to "type" a file on your
screen, but slyly capture the characters into a disk file, you have performed the act of "raw
downloading".

Understanding Data Communication Protocols and Software Page 61

Conversely, if the PC can copy the characters you type to its communication port, then it
can also copy characters from a PC disk file to the port. If you set up the remote computer
to collect these characters into a file, you have done "RAW UPLOADING".

Raw down- and upload can be quite effective on CLEAN, FULL DUPLEX connections
capable of XON/XOFF. Otherwise, the technique is fraught with peril.

There is a somewhat more reliable, but less general technique for uploading, called
ECHOPLEX. It may be used only on full duplex connections, where the remote computer
echoes your typein. Your program sends the file to be uploaded a character at a time, and
reads back the echo of each character. If it agrees, the program goes on to the next
character. Otherwise, it sends a BACKSPACE or RUBOUT, and then resends the
character. Obviously, there are various complications, but these are relatively minor.

CCITT X.3 and X.28 PHYSICAL LAYER PROTOCOL
If the Hayes AT command set is a physical-level protocol, then another similar and
important protocol migh be considered in the same class: CCITT Recommendation X.3,
which describes the functions of a "packet assembler/disassembler" (PAD), and X.28, which
describes the methods available to a "start/stop" DTE (typically an asynchronous character
terminal or PC) to place a data call through a public packet-switched network, and to
establish and control the communication parameters to be used in the connection.

(Actually, this protocol also has elements of the presentation layer in it, and some observers
place it there...)

In this case, the user dials up a PAD on a public network like Telenet or Tymnet, using the
RS-232 protocols, plus Hayes or other dialing protocols. But this is only the first step in
establishing the physical link. At this point, you must issue PAD commands to set up
communication parameters appropriate for the computer you wish to connect to, and then
direct the PAD to put you through.
"SET? p:v,p:v,..." sets the given parameters to the given values
"PAR? p,p,p,..." displays the values of the specified parameters
"C xxx" calls network address xxx (like a phone number).

The settable parameters include baud rate, local vs remote echo, XON/XOFF flow control,
and various terminal-related parameters. Example:
SET 2:1,3:2,5:0
C X123

means select local echo, send terminal input a line at a time, and don’t use XON/XOFF, in
other words a half-duplex terminal setup, and then connect to system "X123". The
parameters are numeric so as not to favor any particular language.

The connection is released automatically when you logout from the remote system, or
manually when you "escape back" to the PAD (using a special escape sequence like
<CR>@<CR>) and give the CLR command.

Many of the popular PC communication programs include functions to dial up popular
information services like The Source through PADs. You merely tell the PC to connect you
to The Source, and it handles the details of dialing the PAD, setting parameters, and
connecting to The Source.

Page 62 THE PHYSICAL LAYER

IEEE 802.3 (ISO 8802/3) ETHERNET PHYSICAL LAYER
PROTOCOL
The Ethernet physical layer is EXTREMELY simple. There’s no opening or closing of the
connection, no call setup, etc. The medium is always there, and all transmissions go to all
connected stations, so all the physical layer has to worry about is transmitting & receiving
the bits, and detecting and reporting line status.

An Ethernet connection consists of an Ethernet controller, which is a board in the
computer, a transceiver cable, and the transceiver itself (Medium Access Unit, MAU),
which "bites" into the Ethernet bus. The transceiver cable has four wires: Data In & Out,
Control In & Out.

(draw picture...)

Manchester encoding is used for data, in which data and clock are combined in "bit
symbols". Each symbol is split in half, with each half containing the binary inverse of the
other half, so a transition always occurs in the middle of a bit symbol. An upwards
transition is a 1, a downwards transition is a 0. When there is no data, the line is kept at 1,
for at least 2 bit times. The next transition signals the start of more data.
IDLE................... 0 0 1 0 IDLE.......
-------+-------+-------+--- +--- + ---+--- +-------+-------+---

| | | | | |
+ + + ---+ ---+--- + ---+ + +

The control wires can each carry 3 different signals:
IDLE CS1 CS0

Control Out: Normal MAU-Request Monitor (Receive Only).

Control In: MAU-Avail MAU-Not-Avail Error
(Carrier Sense) (Collision Detect)

These serve similar functions as some of the RS-232 modem signals, e.g. MAU-Request is
like RTS. MAU-Available is like DSR/CTS. MAU-Not-Available is like CTS OFF.

Software interface to Datalink Layer: 3 procedures, 3 global variables:

Procedures:

RECEIVE-BIT Reads a bit, returns its value to DL layer.
TRANSMIT-BIT(b)

Sends given bit.
WAIT(n) Waits for n bit times.

Variables:

COLLISION-DETECT
Set by PMA when it detects a collision, i.e. more than one station
transmitting at once.

CARRIER-SENSE Set by PMA when it is receiving data, like UART data-ready flag.
Datalink layer won’t send if this is on.

TRANSMITTING Set by Datalink Layer when it wants to transmit.

Datalink layer sets TRANSMITTING flag, then calls TRANSMIT-BIT() with each bit to be

Understanding Data Communication Protocols and Software Page 63

transmitted, in sequence. Then turns off flag when done transmitting.

The Ethernet physical layer is implemented entirely in "firmware", inside the Ethernet
controller. And so is a good portion of the datalink layer. For this reason, there is little or
no software to access the Ethernet transmission medium on the physical level.

CCITT X.21 PHYSICAL LAYER PROTOCOL
CCITT Recommendation X.21 specifies the "interface between DTE and DCE for
synchronous operation on public data networks":
+-----+ +-----+ +-----+ +-----+
| DTE |----| DCE | - (network) - | DCE |----| DTE |
+-----+ +-----+ +-----+ +-----+
| | | |
|<---- X.21 ---->| |<---- X.21 ---->|

There are actually two parts to this protocol: the physical interface and circuit assignments
(X.24, very similar in spirit to RS-232-C, which gives connector and pin assignments for
DTE-DCE connection), and the functional specification (X.21 itself) -- how to use these
circuits to establish, release, and utilize point-to-point connections.

X.24 CIRCUITS:

First, let’s look at the circuits specified in X.24:
DTE DCE Meaning RS-232-C Analogy

+-----+ +-----+
| | Transmit | |
| +------------->+ | Send data to partner Transmit Data
| | | |
| | Control | |
| +------------->+ | On-Line, "off-hook" DTR
| | | |
| | Receive | |
| +<-------------+ | Receive data from partner Receive Data
| | | |
| | Indication | |
| +<-------------+ | Connected with partner Carrier Detect
| | | |
| | Bit timing | |
| +<-------------+ | To synchronize reception of bits
| | | |
| | Byte timing | |
| +<-------------+ | To delimit bytes within bit stream (optional)
| | | | (what a good idea!)
+-----+ +-----+

When the Control and Indication circuits are both ON, then data is being exchanged
transparently between the datalink layers of the two partners; this is called data phase.
Otherwise, control information is being exchanged between the DTE and DCE according to
the X.21 protocol in order to establish or break a physical connection; this is called control
phase.

How does the DCE know the DTE is turned on if its Control circuit is off, and how does the
DTE know the DCE is turned on if its Indication circuit is off? Answer: they transmit a
steady stream of 1-bits to each other on their data circuits.

Page 64 THE PHYSICAL LAYER

X.21 PROTOCOL
To initiate a call, the DTE turns on Control and stops transmitting 1’s. The DCE sends a
SYN and a series of ’+’ characters. DTE then sends a SYN followed by a dialing command,
and waits for reply. (The SYN is provided in case the optional byte-timing signal is not
supplied.)

The network sends SYN and BEL (ring) to the called DTE, which accepts the call by
turning on Control. The network gives line identification info to both DTEs and then turns
on both Indication circuits.

Now the two DTEs are in data phase, and have a full duplex data connection. Notice the
similarity to an autodial modem with the RS-232 signals.

To clear a connection, a DTE merely turns off its Control circuit, and the DCEs and other
DTE go back to control phase. This similar to RS-232-C, in which the terminal can drop
DTR to terminate the connection.

X.21 SOFTWARE IMPLEMENTATION
Given an X.24 physical interface to a network and a device driver that takes care of the bit
and byte delimitation and the transmission of 1’s while the line is inactive, then the
program to execute X.21 protocol is fairly simple. Let’s assume we have functions available
to test selected control signals and turn them on and off, and that connections are
point-to-point (rather than multidrop). We would need only two software functions: one to
open a connection, and another to close it. Here’s some pseudo-C-language code for calling
function:
(1) call(number,line) {
(2) p = open(line);
(3) if (p < 0) then return(p);
(4) set(p,Control,ON);
(5) x = read(p);
(6) if (x != "+++") then return(-1);
(7) x = write(p,number);
(8) address = read(p);
(9) for (i = 10; i > 0 && test(p,Indication) == ON; i--) sleep(1);
(10) if (i == 0) return(-1) else return(p);
(11) }

The program is shown in C rather than BASIC for compactness and clarity, and some
liberty has been taken with the data types, omitted declarations, etc.

Line (1) is the function definition. The function’s name is "call" and it takes two
parameters, the number to call (like a phone number) and the physical communication line
on which to place the call (like selecting COM1 or COM2 on a PC). The function returns a
negative number if it fails, and returns a file descriptor for the open line if it succeeds. The
function’s definition terminates with the closing bracket on line (11).
(2) p = open(line);
(3) if (p < 0) then return(p);

Statement (2) opens the communication line. This presumably makes the device driver
stop transmitting 1’s. If the line could not be opened, the function reports failure by
returning the same negative number that the "open" function returned. If it succeeds, the
device descriptor is returned in the variable p, for use by subsequent read and write
statements.

Understanding Data Communication Protocols and Software Page 65

(4) set(p,Control,ON);
(5) x = read(p);
(6) if (x != "+++") then return(-1);

Statement (4) turns on the Control circuit, which lets the DCE know to expect commands to
appear on the DTE’s Transmit circuit. Statement (5) attempts to read a response from the
network. Statement (6) checks to see if the response is a series of plus signs; if not, the
"call" function returns failure (this example simplistically assumes exactly 3 plus signs are
supplied).
(7) x = write(p,number);

Once the network has indicated its willingness to communicate, our program sends a
dialing command in statement (7). The format of the number as defined in X.21 is quite
complicated, and has many fields and subfields for requesting particular addresses,
facilities, etc.
(8) address = read(p);

After dialing, the program waits in statement (8) for a response from the network, in the
form of a called line address identifier. This is kept for future reference (usually needed
only for multidrop connections).
(9) for (i = 10; i > 0 && test(p,Indication) == ON; i--) sleep(1);
(10) if (i == 0) return(-1) else return(p);

In statement (9) the program waits for the DCE’s Indication circuit to come on. It looks
once a second for 10 seconds. If the circuit does not appear, then failure is reported.
Otherwise, the function returns successfully, providing the higher-level software with the
file descriptor of the open connection to use for data exchange.

The program to clear the connection is even simpler:
(1) clear(p) {
(2) set(p,Control,OFF);
(3) for (i = 10; i > 0 && test(p,Indication) == ON; i--) sleep(1);
(4) close(p);
(5) if (i == 0) return(-1);
(6) return(1);
(7) }

It just turns off Control, waits for Indication to go off, closes the communication line, and
then returns reporting success or failure depending on whether Indication actually went
off. The close function presumably starts the device transmitting 1-bits continuously again.

Thus, the interface presented to higher level software is quite simple. Here’s a program
fragment that opens a connection, sends a message, reads the reply, and closes the the
connection:
(1) n = call("*123456789+",line);
(2) if (n < 0) then error("Can’t place call");
(3) x = write(n,message);
(4) if (x < 0) then error("Can’t send message");
(5) x = read(n,reply);
(6) if (x < 0) then error("Can’t read reply");
(7) print(reply);
(8) x = clear(n);
(9) if (x < 0) then error("Can’t clear call");

Notice how this program, like all good software, checks for and reports errors everywhere

Page 66 THE PHYSICAL LAYER

they could possibly occur.

SUMMARY

We’ve seen how physical connections are established, used, maintained, and released, and
we’ve examined several popular physical-layer protocols. And as we’ve seen, a great deal of
software operates purely at this level. However, such software has certain drawbacks:

1. It usually cannot detect transmission errors. 2. It never can correct them. 3. It cannot
guarantee that the receive can keep up with the sender.

We will look at solutions to these problems next time, when we visit the DATALINK
LAYER.

Understanding Data Communication Protocols and Software Page 67

4. THE ISO DATALINK LAYER
The physical layer is responsible for establishing and releasing a single physical connection
between adjacent network nodes, and for transmitting bits in sequence between the two
nodes.

The datalink layer uses the physical layer to provide point-to-point services in which
physical transmission errors may be detected and possibly corrected, and it shields higher
layers from the characteristics of the physical medium.

Review of ISO terminology:

• Service data unit (SDU) = info received from or passed to superior layer

• Protocol control information (PCI) = control fields added at this layer

• Protocol data unit (PDU) = SDU with PCI added to it

The higher layer gives the datalink a chunk of data (an SDU) to deliver to the partner at
the other end of the physical connection. The datalink layer encapsulates the SDU
(without segmenting or blocking it) within datalink protocol information fields, forming a
datalink protocol data unit (DPDU), called a "frame", and calls upon the physical layer to
transmit it. The datalink protocol fields always include:

• Unambiguous marking of the beginning and end of the frame

• Frame check sequence (FCS) for error detection

For instance:
+-----+-----+

Higher Layer: | PCI | SDU | (PCI + SDU = PDU)
+-----+-----+

|
V

+------+-----------+-----+------+
Datalink Layer: | FLAG | SDU | FCS | FLAG | (PCI = FLAGs + FCS)

+------+-----------+-----+------+
|
V

Physical Layer: (transmits the frame)----------------->

Thus, the datalink layer may always be relied upon to provide error-checked transmission
of the data that is provided to it.

In the example above, the flag fields define the frame boundaries and allow the frame check
sequence to be identified, so that the receiver of the frame can tell whether there have been
transmission errors. Since the data or control fields might contain bytes that correspond to
the flag byte, the datalink layer is also responsible for transparency.

Optionally, a datalink frame may also include:

• Sequencing information

• Address information

• Control information

Page 68 THE ISO DATALINK LAYER

And, optionally, the datalink layer may do error recovery itself by reconstructing or
requesting retransmission of damaged frames, or it may simply pass an error indication up
to the higher layer, which may request retransmission itself.

All error-checking protocols include a datalink layer: the asynchronous Xmodem and
Kermit protocols, as well as synchronous protocols like IBM Bisync, DEC DDCMP, ISO
HDLC, IBM SDLC, and ANSI ADCCP. Some of these protocols predated the ISO definition
for the datalink layer, and in fact the ISO definition was designed to accommodate them.

LINK ACTIVATION AND MAINTENANCE:
A datalink connection is started when the two datalink entities make contact with each
other and exchange parameters concerning which protocol options they might be using,
maximum frame lengths, timeout intervals, etc. If the physical link becomes inoperative
during the connection, the datalink entities may monitor it until it becomes available again,
then reestablish their connection and re-exchange parameters.

FRAMING AND TRANSPARENCY:
A datalink frame is marked by a unique pattern (flag) byte at the beginning, and its end is
marked in any of several ways. The datalink entity is able to identify the beginning of the
frame based upon the flags byte. But what happens when the flag byte occurs in the data,
or in one of the control fields? How can this value be included in the packet without the
frame reader prematurely identifying the end of the frame?

There are three ways to achieve transparency, and each has an associated class of datalink
protocols: character-oriented protocols, byte-count protocols, and bit-oriented protocols.

In character-oriented protocols, a message is framed and formatted using special characters
like SOH, STX, ETX, ETB, and DLE from a particular character set, like ASCII or
EBCDIC. Thus these protocols are said to be "code dependent". When these characters
must occur in the data, they are prefixed (typically by DLE) to indicate they are (or are not)
being used for control purposes. This technique is called "byte stuffing" -- a extra bytes are
"stuffed" into the message. IBM’s Binary Synchronous Communications Protocol (BSC, or
"Bisync") is the best-known byte-oriented protocol. The length of a message is therefore
dependent on the character of the data, how many bytes must be stuffed, etc.

Byte-count protocols use a special character sequence to mark the beginning of the frame,
and a length field to indicate where the frame ends. This allows for special characters
within the data, and makes the length of the message independent of the contents of the
data. Two well-known examples are DEC’s Digital Data Communications Message Protocol
(DDCMP), and IEEE 802.3 MAC. DDCMP is code-independent except for the special
characters it uses to mark the beginning of the frame.

In bit-oriented protocols, the message begins and ends with a special bit pattern, called a
"flag", which is allowed to occur nowhere else within the frame. All other fields are
positionally located relative to the flags. Transparency is achieved by inserting extra bits
in any byte that matches the frame byte. For example, if the flag byte is 01111110, then
whenever this pattern occurs inside the frame, it is changed to 011111010 by the
transmitter. The receiver deletes any 0-bit that follows five consecutive 1-bits. This
technique is called "bit-stuffing". Bit-oriented protocols are code-independent; nothing in
the datalink layer depends on the system’s character code. Bit stuffing is the currently
favored technique for achieving transparency; examples include ANSI ADCCP, ISO HDLC,
and IBM SDLC. However, it requires interfaces that are not intrinsically byte-oriented,
and cannot be used elsewhere (e.g. on asynchronous connections).

Understanding Data Communication Protocols and Software Page 69

ERROR CONTROL:
Frames may be altered during transmission by various phenomena: noise (electrical
interference), insertion of SYN "idle" characters in synchronous transmission, etc., and it
may also be lost upon receipt due to buffer overruns. The receiver must be able to check
whether the frame was received completely and correctly.

Error-checking schemes can be evaluated on two criteria: their efficiency in catching errors
(the ratio of errors caught to those that remain undetected), and their cost in additional
transmission.

There are two kinds of error control. One is a frame-check sequence (FCS), a code
consisting of one or more bytes appended to the frame, also sometimes called a block check
(BC) or block check character(s) (BCC). The other, usually used in forward error correction
(FEC, explained below), adds error-checking information to each byte in the frame.

There are many, many FCS techniques. They vary in the length of the FCS, the method
used to compute the FCS, and the reliability of the method in detecting various kinds of
errors. The FCS is computed by the sender, recomputed by the receiver, and compared
with the value transmitted by the sender. If the two values agree, the frame is accepted,
otherwise it is in error.

The FCS is to the frame as the parity bit is to a byte -- it allows detection of some errors,
allows other errors to slip through undetected, but does not allow detected errors to be
corrected. The most common FCS techiques are checksum and CRC.

Checksum
A CHECKSUM is a numeric sum of all the bytes in the frame, i.e. their bit values are
summed arithmetically (as if the bytes were numeric rather than character data), and the
sum (possibly truncated) becomes the FCS, which may be 8 bits, 16 bits, or more. The
arithmetic used in accumulating the sum may be normal addition with carries (binary 1 + 1
= 10), or modulo-2 (one’s complement) addition, in which carries are discarded (1 + 1 = 0).
Here’s an example with normal addition:
ASCII Decimal Binary
Character Value Value

M 77 01001101
E 69 01000101
S 83 01010011
S 83 01010011
A 65 01000001
G 71 01000111
E + 69 + 01000101

Checksum = 517 1000000101 (note overflow out of 8-bit byte)

If 8-bit bytes are being summed, and the maximum value of an 8-bit byte is 255, then the
maximum number of bytes that can occur in a message with a 2-byte (16-bit) checksum
without possibility of overflow is 256. If the average value of the bytes within the message
is 128, then the message may be 512 bytes long. When bits overflow from the checksum,
then it does not reflect the values of the high order bits of the data bytes. Thus an
arithmetic checksum’s effectiveness diminishes with the length of the message.

If modulo-2 arithmetic is used, then each bit position n in the checksum is the "exclusive
OR" of the values of bit n of all the data bits, and each checksum bit has equal validity:

Page 70 THE ISO DATALINK LAYER

ASCII Decimal Binary
Character Value Value
M 77 01001101
E 69 01000101
S 83 01010011
S 83 01010011
A 65 01000001
G 71 01000111
E + 69 + 01000101

Checksum = 67 01000011

Now suppose that each of two bytes has a 1-bit error in the same bit position:
Original Error
Bytes Bytes

10010101 10110101
+ 00110110 + 00010110
11001011 11001011 <-- Checksum

The checksum is the same. The two errors have cancelled each other out, and the
checksum will not detect the errors. This happens with both arithmetic and modulo-2
checksums.

If there have been no carries out of the checksum, or if modulo-2 arithmetic is used, and if
we assume that all errors are equally likely, the probability of an error going undetected is
the ratio of the number of all errors that can cancel each other out to the number of all
possible errors, which works out to be 2−n (two to the minus-nth power), where n is the
number of bits in the checksum. For an 8-bit checksum, the ratio is 1/256; for a 16-bit
checksum it’s 1/65536.

In practice, data communication errors rarely occur in isolated bits, so the probability of
errors cancelling each other out is lower than it seems at first glance. Also, to reflect real
performance, these probabilities must be multiplied by the probability that an error will
occur at all. For instance if the bit error rate on a particular line is 1/100,000, then the
probability that an error will occur in a given 100-byte (800-bit) message is 800/100,000 =
8/1000, and the probability of an error going undetected by a 16-bit checksum on this
message is therefore:

× =
8

1000
1

65536
1

8192000

i.e. one in 8.2 million. For an 8-bit checksum (as used in Xmodem), it’s:

× = .
8

1000
1

256
1

32000

The checksum is implemented very simply in software. For instance, in BASIC, if the
message to be sent is in a variable M$, then the checksum is computed like this:
1000 C = 0
1010 L = LEN(M$)
1020 FOR I = 1 TO L
1030 C = C + ASC(MID$(M$,I,1))
1040 NEXT I

and then appended to the message like this (assuming it’s an 8-bit checksum):
1050 M$ = M$ + CHR$(C AND 255)

Understanding Data Communication Protocols and Software Page 71

and transmitted, e.g. with a PRINT statement. The BASIC functions used above are LEN
(returns the length of a string), MID$(x$,p,n) (returns substring of x$ starting at position
p, length n), and ASC (returns the ASCII number of the given character). The AND operator
returns the logical AND function of its two operands; C AND 255 returns the low-order 8
bits of the number C (255 decimal = 11111111 binary).

The receiver gets the message with an INPUT statement and then checks the checksum as
follows:
2000 C = 0
2010 L = LEN(M$)
2020 FOR I = 1 TO L-1
2030 C = C + ASC(MID$(M$,I,1))
2040 NEXT I
2050 IF (C AND 255) = ASC(MID$(M$,L,1)) THEN accept ELSE reject

For a 16-bit checksum, each 8-bit checksum byte would have to be done separately:
1050 M$ = M$ + CHR$((C AND -256)/256) + CHR$(C AND 255)

with corresponding complications in the receiving program. The number -256 selects the
high-order 8 bits of a 16-bit number (-256 decimal = 1111111100000000 binary, assuming a
16-bit word). (By the way, it would have been more straightforward to use 65280 rather
than -256, but IBM PC BASIC can’t represent any positive integer larger than 32767 in its
16-bit word). Dividing this number by 256 shifts it to the right 8 bits, so that it can be
treated like a character. This kind of manipulation is very common in data communica-
tions programming.

To further reduce the probability of self-compensating error bursts, there are variations on
checksum techniques. For instance, each block of data can have two checksums, one for the
odd-numbered bytes, and one for the even ones. If the probability is high that an error
burst will span a byte boundary, then an error that might otherwise be self-compensating
would be split into two different checksums and caught.

A similar technique, used more often in higher-level protocols, is the Fletcher checksum,
which is basically a 2-byte checksum in which the first byte is a regular 8-bit arithmetic
sum, and the second byte is a kind of checksum on the checksum, with both bytes then
adjusted so that the sum of all the bytes in the message, including the checksum bytes, will
be zero, which makes it very easy to check on the receiving end.

Cyclic Redundancy Check
A CYCLIC REDUNDANCY CHECK (CRC) is a quantity formed by treating the entire
message as a large binary number and dividing that number by another binary number.
The CRC is the remainder. The most common CRC is based on the divisor
1000100000010001. This number is customarily expressed as a polynomial:

x16 + x12 + x5 + 1

where x is 2 and a superscript number is an exponent; x12 means "raise x to the 12th power".
Polynomial notation is used for readability, and so that polynomial arithmetic can be used.
The polynomial shown above is the one recommended by the CCITT, but there are other
16-bit CRCs in wide use, such as the "CRC-16":

x16 + x15 + x2 + 1

Page 72 THE ISO DATALINK LAYER

and there are also 12-bit and 32-bit versions. The latter is becoming increasingly
important, and is being incorporated into existing standards like IEEE 802.3 Ethernet and
FDDI:

x32 + x26 + x23 + x22 + x16 +x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

Most books on data communications do not explain how CRC works or why it gives the
results it does; here it is, in capsule form.

The data message itself is called the "message polynomial" M(x) and the divisor is called the
"generating polynomial" P(x). The "degree" r of P(x) is the exponent of the highest term,
which is 16 in the 16-bit versions. Let’s work through an example in which:

M(x) = x9 + x7 + x3 + x2 + 1 = 1010001101

P(x) = x5 + x4 + x2 + 1 = 110101

The CRC procedure works like this:

M(x) is multiplied by xr, which amounts to shifting M(x) r bits to the left:

x5 × (x9 + x7 + x3 + x2 + 1) = x14 + x12 + x8 + x7 + x5 = 101000110100000

In other words, r zeros are are tacked on to the right of the message. These are
placeholders for the CRC that will be calculated. The resulting quantity is divided by P(x),
giving a quotient Q(x) and a remainder R(x):

= 101010110, remainder 01110.
101000110100000

110101

The remainder is added the message using modulo-2 addition (no carries):
101000110100000

+ 01110
101000110101110

and we call the result T(x), the message to be transmitted. T(x) is exactly divisible by P(x)
because when you divide A by B and get a remainder R, then A − R is exactly divisible by B
and, in modulo 2 arithmetic, A − R is the same as A + R.

When T(x) is transmitted, the receiver simply divides it by P(x) and checks to see if the
remainder is zero. If so, no error is detected.

But what if there are transmission errors? A number of bits may be changed by noise. The
noise pattern can be called E(x). For a message in error, T(x) + E(x) will be received (where
"+" is modulo 2 addition -- no carries). If this sum is evenly divisible by P(x), then no error
will be detected. In fact, since T(x) is evenly divisible by P(x), then T(x + E(x)) will be evenly
divisible by P(x) only if E(x) is itself evenly divisible by P(x). Therefore, P(x) must be picked
so that it is very improbable that a pattern of error bits will be a multiple of it. For this
reason, it should be a prime number (a number divisible only by one and itself). The CCITT
did extensive studies of error patterns on switched transmission lines in order to arrive at
its recommended polynomial.

If a frame has a single bit in error, then E(x) = xi, where i is less than the message length. If

Understanding Data Communication Protocols and Software Page 73

P(x) has more than one term, then xi cannot be evenly divided by it. Thus all single-bit
errors are detected.

Similarly, if a frame has two bits in error, then E(x) has two terms. Therefore if P(x) has
three or more terms, then it cannot be evenly divided into E(x), and all double-bit errors can
be detected.

If E(x) has any odd number of bits in error, then it can be proven that E(x) is not evenly
divisible by (x + 1), so that any P(x) that has (x + 1) as a factor will catch all odd numbers of
error bits.

It can also be proven that all error bursts of length less than the degree r of P(x) can be
caught.

And it can be shown that an error burst whose length is the same as the degree, r, of P(x)
can be caught except when the error burst is identical to P(x). The probability of this
happening is (1/2)r−1.

Finally, for error bursts longer than r, it can be shown that the probability of undetected
errors is 2−r.

The formal proofs of these statements, for those who are interested, are given in reference
9.

Probability For P(x)
Bits in Error of Detection r = 16
Single 1.0 100.0%

Double 1.0 100.0%

Any odd number 1.0 100.0%

Error burst < r+1 1.0 100.0%

Error burst = r+1 1−(1/2)r−1 99.99695%

Error burst > r+1 1−(1/2)r 99.99847%
It might be noted here that an 8-bit modulo-2 checksum can be characterized as a CRC
generated by

P(x) = x8+1

and so the above analysis would apply to it as well.

The Achilles’ heel of the CRC method is that whenever an error burst occurs that is a
multiple of the generating polynomial, it will go undetected. Such an occurrence was
thought to be very unlikely 10 or 15 years ago when the various standard checking
polynomials were standardized, but the appearance of new equipment has changed the
situation. For instance, in RF modems that use quadrature or phase shift techniques, a
single error can propogate into 2 or 3 symbols, and in certain modem designs, the result
will be as if the CRC generating polynomial had been added (modulo-2) to some part of the
message, so that the resulting error will go undetected. In fact, certain modems of recent
vintage generate errors which match the CRC-16 polynomial with disturbing frequency.

Page 74 THE ISO DATALINK LAYER

Software implementation of CRC calculations does not follow the mathematical model
we’ve been looking at. The computer does not allow strings of arbitrary numbers of bits to
have arithmetic performed on them. Computer arithmetic occurs within computer "words"
of fixed length, and data is stored in bytes. Therefore, the polynomial division discussed
above has to be simulated on a byte-by-byte basis.

Here is an IBM PC BASIC program to calculate the CRC-CCITT using a magic number,
4225 (derived from the CCITT polynomial), along with various shifts (simulated by
division), ANDs, exclusive ORs, and special manipulations (as in line 5060) to achieve
unsigned 16-bit arithmetic which PC BASIC is otherwise disinclined to do.
5000 CRC = 0
5010 FOR I = 1 TO L
5020 C = ASC(MID$(M$,I,1))
5030 FOR J = 1 TO 16 STEP 15
5040 Q = INT(CRC XOR FIX(C / J)) AND 15!
5050 Y = Q * 4225!
5060 IF Y > 32767! THEN Y = Y - 65536!
5070 CRC = (INT(CRC / 16!) AND 4095) XOR INT(Y)
5080 NEXT J
5090 NEXT I
5099 RETURN

Putting a RETURN statement at the end turns this code fragment into a subroutine that
can be called after defining M$ (the message) and L (the length of the message).
4000 M$ = "This is a new message"
4010 L = LEN(M$)
4020 GOSUB 5000
4030 M$ = M$ + CHR$(((CRC AND -256)/256) AND 255) + CHR$(CRC AND 255)
4040 PRINT M$

The receiver gets the message and checks the CRC as follows:
4100 L = LEN(M$) - 2
4110 X$ = MID$(M$,L+1,2)
4120 GOSUB 5000
4130 Y$ = CHR$(((CRC AND -256) / 256) AND 255) + CHR$(CRC AND 255)
4120 IF X$ = Y$ THEN accept ELSE reject

This method of computing the 16-bit CRC-CCITT may not be pretty, but it works, and it’s
compatible with the methods used in the real world.

Here, for comparison, is a C-language CRC function. The data string is passed as argument
s, and the length as len. ‘‘^’’ is the exclusive-OR operator, ‘‘&’’ is the logical AND operator,
and ‘‘x >> 4’’ shifts the number x 4 bits to the right.
crcchk(s,len) char *s; int len; {

unsigned int c, q;
long crc = 0;

for (; len-- ; len > 0) { /* For all chars in string */
c = *s++; /* Get the character */
q = (crc ^ c) & 15; /* Do low-order 4 bits */
crc = (crc >> 4) ^ (q * 4225);
q = (crc ^ (c >> 4)) & 15; /* then high-order 4 bits */
crc = (crc >> 4) ^ (q * 4225);

}
return(crc);

}

Understanding Data Communication Protocols and Software Page 75

Forward Error Correction:
FCS methods allow errors to be detected, but they can be corrected only by requesting
retransmission. There is another method that allows errors to be detected and corrected by
the receiver. This is called Forward Error Correction (FEC). FEC carries relatively high
transmission overhead, but in some situations (transmission through satellites or from
spacecraft) it’s worth it to avoid retransmissions.

FEC is an extension of parity. If an 8-bit byte includes 7 data bits and an even or odd
parity bit, then there are only 128 valid bit combinations. In order to change one valid
pattern into another, at least two bits must be changed. Thus a code using a single parity
bit has a "minimum distance" of two between any two valid characters.

If the minimum distance is three, then any single error turns a valid code word into an
invalid one, which is a distance one away from the original, and a distance two away from
any other valid code word. Thus the original can be uniquely reconstructed. In a code with
a minimum distance of three, any double bit error can be detected, and any single bit error
can also be corrected. But how do you locate the bit that was in error?

A "Hamming code" (named after R.W. Hamming of Bell Labs, see reference 7) adds k parity
bits to each m-bit data byte, to form an m+k bit code, where 2k ≥ m+k+1 (so that the number
k is big enough to pinpoint the location of any of the m+k bits in error, or can be 0 if there
are no errors). The bits in the resulting code word are labelled in order 1, 2, 3, 4, . . . from
left (most significant bit) to right (least). The parity bits go at positions 1, 2, 4, 8, . . .
(powers of two). For instance, here is a code word with m=4 and k=3:
1 2 3 4 5 6 7 <-- code word position number (c1, c2, . . . c7)

x x x x <-- data bit positions
1 2 3 4 <-- data bit position number (m1, m2, m3, m4)

1 1 0 0 1 1 0 <-- code word (parity mixed with data)
x x x <-- parity bit positions
1 2 3 <-- parity bit position number (p1, p2, p3)

Here’s a table of the position numbers:
Code Word Parity Bit
Error Position Number
Position p1 p2 p3

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

Looking at column p3 you can see that if an error occurs in code word bit 1, 3, 5, or 7, then
the least significant bit of the parity code is 1. Similarly, if the error is in code word bits 2,
3, 6, or 7 then the middle parity bit is 1. And if the error is in bits 4, 5, 6, or 7 then the
most significant parity bit is 1.

So... if p1 is used as a parity bit for (c1,c3,c5,c7), and p2 for (c2,c3,c6,c7), and p3 for
(c4,c5,c6,c7), then the number formed by (p1,p2,p3) tells the position of the error bit, if any.

For example, suppose the data word 0001 was to be transmitted. Inserting the even parity
bits at the right positions, we construct the code word 1101001, and transmit it, but a

Page 76 THE ISO DATALINK LAYER

transmission error occurs in c5, so that coded message 1101001 becomes 1101101:
1 2 3 4 5 6 7 <-- code word position number (c1, c2, . . . c7)

x x x x <-- data bit positions
1 2 3 4 <-- data bit position number (m1, m2, m3, m4)

1 1 0 1 0 0 1 <-- code word before transmission
1 1 0 1 1 0 1 <-- code word after transmission
x x x <-- parity bit positions
1 2 3 <-- parity bit position number (p1, p2, p3)

The receiver checks the parity of the three groups of bits:

Bit Group Value Parity
c4,c5,c6,c7 1 1 0 1 1 (odd) = p1
c2,c3,c6,c7 1 0 0 1 0 (even) = p2
c1,c3,c5,c7 1 0 1 1 1 (odd) = p3

The position number formed by (p1,p2,p3) is 101, and therefore the bit in error is c5. To
correct the error, the receiver of the message simply complements this bit (i.e. changes it
from 1 to 0).

This example shows how a Hamming code can be used to detect and correct single bit
errors. By adding an overall parity bit for the entire code word, double bit errors can also
be detected (but not corrected); when two bits are in error, the overall parity will be correct,
but the position number will indicate an error (but since there are two errors, only one of
them can be corrected).

In real life, we transmit 7-bit or 8-bit data bytes, and require correspondingly larger code
words. For instance, with 7-bit data bytes, we can detect and correct single-bit errors with
4 parity bits, resulting in an 11-bit code word. Also, additional bits can be added to allow
detection and correction of more errors per code word; in general, a code that can detect n
errors can correct n/2 errors.

Since FEC cannot correct all errors, there still must be a retransmission request
mechanism if we want totally error-free data. A single-bit correcting FEC can be used in
environments where the probability of a 1-bit affecting a particular code word is
significantly higher than a multiple-bit error.

In some situations, retransmission is not a viable option, for instance when voluminous
data is being sent back from a probe to a distant planet. In this case, much more
complicated FEC methods are used, such as the BCH (Bose, Chaudhouri, Hocquengham,
used by Intelsat) and Reed-Solomon linear block codes, or convolutional codes such as the
Viterbi algorithm. One space probe worker reports that the typical, near-standard, method
(which was used on the Voyager spacecraft) is to first first compress the data (using the
Rice algorithm), then encode using a rate 223/255 Reed-Solomon code over the alphabet
GF(28), then interleave to depth 4 (for help with bursts), then inner-code with a 1/2
constraint length 7 convolutional code. For those who are interested, these methods are
described in references 11 and 6.

Since space probes are sending back mainly picture data, it is not disastrous if some errors
cannot be corrected -- we just wind up with pictures with spots on them, and even these can
be fixed up using image processing techniques.

Understanding Data Communication Protocols and Software Page 77

CONNECTIONLESS VS CONNECTION-ORIENTED
PROTOCOLS:
We’ve seen how the datalink layer does framing and error detection. However, the OSI
definition of the datalink layer says it also can do connection, sequencing, and flow control.
We have seen at the physical layer what it means to establish and release connections, and
to do flow control. But these mechanisms are a little bit different when the unit of
information transfer is a structured frame, rather than a featureless stream of bits.

Most OSI protocols are "connection-oriented". That means, they proceed through three
phases: connection establishment, data transfer, and connection release. When a
connection is opened, a database is created for the connection, containing information like
the address of the peer, the current sequence number, the flow-control status, and a
retransmission buffer for the most recent (or several most recent) messages. For the rest of
the connection, this database is referred to very efficiently using shorthand "pointers",
much like the file numbers that programmers use after opening a file. Connection-oriented
protocols assure correct and complete peer-to-peer communication. Correctly received
messages are acknowledged. Retransmission of damaged or missing messages can be
requested by sequence number, and duplicates can be detected and discarded based on the
sequence number.

A connectionless protocol does not establish or maintain any relationship between
individual data transfers. There is no sequencing, no database, no acknowledgement.
How, then, can a connectionless protocol possibly work? On its own, it can’t. But it can
occupy one or more of the layers in a complete protocol stack. So long as there is a
connection-oriented protocol above the highest-level connectionless protocol, it can take
care of sequencing and retransmission.

Why would we want a connectionless protocol? Several reasons...

• On a clean, single-user at a time medium, like Ethernet, there’s not much
chance of messages becoming misordered, so the overhead of maintaining a
connection at the datalink or network level can be avoided.

• In a packet-switched network, it is not possible to have a connection-oriented
network layer, because packets will take different routes.

• If the network is totally reliable, then the transport protocol could connec-
tionless.

Datalink protocols can be either connection-oriented or connectionless. We will look at
examples of each.

FLOW CONTROL METHODS:
Datalink software must be able to avoid buffer overruns. This means it must be able to
control the rate at which data is being sent to it. The XON/XOFF method used in
asynchronous transmission is generally not used because (a) network protocols tend to send
arbitrary 8-bit data, in which the XOFF and XON patterns can occur, and (b) in
synchronous transmission, the transmitter has to keep sending constantly anyway. So
datalink flow control usually means that the receiver must control the rate at which
datalink frames are sent to it (rather than individual characters), as well as the maximum
size of a datalink frame.

The maximum frame size can be negotiated during datalink connection establishment as a

Page 78 THE ISO DATALINK LAYER

function of the buffering capability, but other factors might also be considered, like the
quality of the physical connection. The higher the bit error rate, the greater likelihood of
retransmissions. Longer packets give greater efficiency (data/protocol ratio) but are more
likely to be corrupted and take longer to retransmit than shorter packets.

The frame transmission rate can be regulated in several ways:

• Stop-and-wait. Each frame must be acknowledged before the next one is
transmitted. BSC and Xmodem use this method.

• Explicitly. Datalink frames can contain control information that grants or
denies permission to the partner to transmit. HDLC in Unbalanced Normal
Response mode is an example.

• Buffer credits. Datalink frames can contain control information specifying how
many buffers are free for use.

• Window size (explained under Sequencing).

SEQUENCING:
Sequencing is an optional feature of the datalink layer. In multinode routing networks,
sequencing is more properly an end-to-end rather than a point-to-point function, because
packets can take different routes; a routing node has no way of knowing whether a packet
is missing because it was lost in transmission, or because it took a different route.

In virtual or switched circuit networks, where all packets follow the same route, it makes
some sense for sequencing to occur at the datalink level. This way, it becomes a network
function, and frees the host computer from having to do it. However, the datalink layer
may still omit this function and leave it to a higher layer.

For packets to be delivered to the upper layers in proper order, the datalink frames must
carry a sequence number as part of their datalink protocol control information. This is
typically a small number, ranging from 0 to 7 and then "wrapping around" to 0 again. In
stop-and-wait systems like BSC, a modulo-2 sequence number is sufficient (a frame is
either "this one" or "the previous one").

The sequence number allows the receiver of frames to determine whether any frames are
missing or duplicated, and to request retransmission of missing ones and ignore duplicated
ones.

Sequencing and flow control are closely related, since sequencing can be used as a flow
control mechanism. In stop-and-wait connections, frame number n+1 is not sent until
frame n has been acknowledged. However, in connections with long round-trip delays (such
as satellite links), stop-and-wait is very inefficient: the faster the transmission speed, the
more the (constant) delay time determines the throughput.

Therefore a sequencing-cum-flow-control scheme called windowing may be used. The
sender may send many frames in a row without waiting for acknowledgment. Each
unacknowledged frame is kept in a list, or "window". Transmission stops only when the
window fills up. Meanwhile, the receiver is acknowledging the frames. Whenever the
earliest frame in the sender’s window is acknowledged, the window "slides" forward a
notch. Thus, if acknowledgements arrive at a steady rate, transmission can be continuous.

The major complication with "sliding windows" is how to recover from errors. There are

Understanding Data Communication Protocols and Software Page 79

two methods: selective retransmit and go-back-to-n. In selective retransmission, each
frame is acknowledged explicitly. If a frame is received in error, or a "hole" in the window
prevents it from sliding forward, then a "negative acknowledgement" (NAK) is sent for the
damaged or desired frame, and only that frame is retransmitted. Each frame may be
retransmitted up to a specified retry threshold before the connection is given up for lost.

In the the other method, go-back-to-n, the receiver will only accept packets in sequence.
This scheme requires fewer explicit acknowledgements; an ACK for frame n also
acknowledges all previous frames. However, this means that a NAK for frame n amounts
to a request for retransmission of that not only that frame but also all later frames.

The size of the window must not be larger than the range of sequence numbers, or else
packet numbers would be ambiguous. With selective retransmission the window size can
be no greater than n/2 − 1. This is because in the worst case, the sender has sent an entire
windowful of frames, and the receiver has received and ACK’d them all, but all of the ACKs
were lost in transmission. The receiver has already slid its window forward, but the sender
hasn’t. The sender, having received no acknowledgements for its window full of frames,
retransmits them all. If their window size spanned the range of sequence numbers, the
receiver would erroneously accept these old frames as new ones.

In go-back-to-n, the window size may be as large as n − 1. There is never any doubt about
which frame the receiver is NAKing, because it only accepts frames in sequence.

CASE STUDIES:

1. XMODEM (asynchronous)

• Packet format: SOH NUM −NUM 128-data-bytes BCC

• Packet length: 132 (fixed). Xmodem has an implied byte count of 132.

• Transparency: bare 8-bit data requires fully transparent data path. Framing
character (SOH) can appear in data or control fields, as can XON and XOFF,
commonly used for flow control on full-duplex asynchronous connections.
Transparency depends upon implied byte count.

• Error control: 8-bit checksum or 16-bit CRC, but only on data packets;
responses are not error checked, nor are EOT or other control messages.

• Flow control: stop-and-wait.

• Sequencing: 1-127 (packet 0 not used), only on data packets, not on responses.

• Code dependence: Since all control fields in Xmodem packets are binary
numbers, Xmodem would seem to be code-independent. However, the respon-
ses are particular ASCII characters like ACK, NAK, CAN, etc. So it’s a
mongrel.

2. KERMIT (asynchronous)

• Frame format: SOH LENGTH ... BCC CR, framed by SOH and CR.

• Frame length: variable, maximum 20 - 800000 (negotiated), indicated by length
field.

Page 80 THE ISO DATALINK LAYER

• Transparency: 7- or 8-bit data negotiated, no control characters appear between
SOH and CR, but are encoded as printable characters and prefixed (byte
stuffing).

• Error control: 6- or 12-bit checksum, or 16-bit CRC negotiated, located based on
packet length field + negotiated block check length. Retransmission is
requested for corrupted packets, corrupted acknowledgements are ignored and
cause timeout and retransmission.

• Flow control: XON/XOFF, stop-and-wait, or sliding window with selective
retransmission (negotiated).

• Sequencing: Packet number 0-63 (window size 31 max) on all packets, allows
matching of acknowledgement to packet being acknowledged, so that sliding
window with selective retransmit is possible.

• Code dependence: Kermit control fields, including the packet length and block
check, are expressed as ASCII characters.

3. IBM Binary Synchronous Communication (BSC, BISYNC) (synchronous)

BSC is a synchronous character-oriented protocol developed by IBM in the late 1960s for
communication between its mainframes and batch or block-mode terminals. It can be used
with ASCII or 6-bit character codes, but is most commonly used with EBCDIC (an ASCII
version is standardized as ANSI X.28, 1971, 1976).

Frame formats:
SYN SYN SOH header ETB BCC PAD (pad = 11111111)
SYN SYN SOH header STX text ETB/ETX BCC PAD
SYN SYN STX text ETB/ETX BCC PAD
SYN SYN DLE STX transparent text DLE ETB/ETX BCC PAD
SYN SYN CC (CC is ENQ, EOT, etc, not error-checked)

The last format is used for responses, like ACK, NAK, as well as for connection
establishment and release.

Connection establishment: Sender sends ENQ, receiver responds with ACK.

Connection release: Sender sends EOT.

Frame length: variable, delimited by control characters.

As in all synchronous protocols, a series of SYNs precedes the frame to ensure the receiver
knows where the byte boundaries are. Then comes a frame enclosed in special framing
characters. The frame consists of an optional header starting with SOH (Start of Header).
The text (data) portion of the frame starts with STX (Start of Text) and ends with either
ETB (End of Transmission Block), or ETX (End of Text, no more data blocks to be sent).
The ETB or ETX is followed by the block check character(s) (BCC). The receiver checks the
BCC and sends ACK or NAK in response.

Transparency: In addition to SOH, STX, ETB, and ETX, a number of characters are special
in BSC, including:

ITB End of intermediate transmission block, when messages are broken up into
sections for error checking purposes. Like ETB or ETX, ITB is followed by the

Understanding Data Communication Protocols and Software Page 81

BCC. But Unlike ETB or ETX, ITB does not require a response.
EOT End of Transmission, or multipoint line control.
NAK Negative Acknowledgement, previous block was received in error.
ENQ Connection establishment, or polling/addressing in multipoint connections.
DLE Data Link Escape, primarily used to prefix special characters when they appear

in data.

In normal data mode, the control characters trigger their designated functions, and SYNs
(which might be "idled" by the transmitter) are discarded. If any of these special characters
might appear in data, BSC must go into "transparent text" mode. In transparent mode, the
control characters (including SYN) are treated as data unless they are preceded by DLE.
Transparent text begins with DLE STX rather than STX alone. For example:

Text mode: SYN SYN STX C D E SYN F G ETB BCC PAD
Transparent: SYN SYN DLE STX C D E SYN F DLE SYN G ETB DLE ETB BCC PAD

In the first frame, the data is "C D E F G" and the SYN is discarded. In the second, the
data is "C D E SYN F G ETB".

Error control: CRC-16 (for EBCDIC BSC), retransmission requested via NAK up to retry
limit. CRC includes all characters following the first SOH or STX after a line turnaround,
up to and including the block terminator (ASCII BSC uses vertical plus longitudinal parity,
but ASCII BSC is uncommon). Timeouts handle loss of frames. Certain messages (ACKs
and NAKs, EOT, etc) are not error checked.

Flow control: Stop-and-wait. Each block must be ACK’d before next one is sent (BSC is
designed for half-duplex operation). There are additional rules regarding line turnaround,
delayed transmission, reverse interrupts, etc.

Sequencing: ACK0 and ACK1 for even and odd blocks (ACKs in BSC are not single
characters, but rather 2-character sequences). The data blocks themselves have no
sequence numbers. Because the protocol is stop and wait, the sender can keep track of even
and odd numbered blocks, and make sure the ACKs match.

Code dependence: BSC is a character-oriented protocol that depends heavily on the
particular character code. For this reason there are separate EBCDIC and ASCII versions.

Note that clear separation of the synchronous receiver-transmitter (USRT) and the protocol
is not possible. For instance, the USRT knows to send SYNs as idle characters when it has
nothing else to transmit. But in transparent data mode, SYNs in the data must be
preceded by DLE. But the data has already been given to the USRT by the protocol. So
quite often, the USRT and the protocol are combined into a single piece of BSC hardware,
which is then not usable with other protocols.

4. DEC DDCMP (asynchronous or synchronous)

DDCMP is a byte-count-oriented protocol designed by DEC in 1974. It may be used on
serial or parallel, full- or half-duplex, synchronous or asynchronous connections.

Packet format: SYN SYN CLASS COUNT FLAG RESPONSE SEQ ADDRESS CRC DATA
CRC

The CLASS field specifies whether the frame type: data, control (ACK, NAK, etc.), or

Page 82 THE ISO DATALINK LAYER

maintenance. COUNT is the byte count. The FLAG tells the receiver whether to expect
SYN characters after the frame (so it can turn on its "sync search" and "strip sync"
hardware). SEQ and RESPONSE are the frame numbers of the current frame, and the
frame most recently received. ADDRESS is used in multipoint connections, otherwise it is
ignored. Then comes a "header CRC", which allows the packet receiver to accept or reject
the length field with some confidence, followed by variable-length 8-bit transparent data
(up to 16363 bytes), and then a CRC for the data.

Packet length: Up to 16373 bytes.

Framing: Frame begins with Class Flag: SOH (data), ENQ (control), or DLE (maintenance).
Byte count follows immediately, defines end of frame.

Transparency: Byte count allows any data at all to follow. But transmitter must not "idle a
SYN" anywhere in the packet if receiver has not been told to turn on its "strip SYN" logic.

Error Control: CRC-16 on 6-byte header, another one on data. Corrupted packets are
NAK’d explicitly, or retransmitted because of timeout when not ACK’d. What if the header
of a DDCMP message is corrupted. The receiver detects this because the header checksum
is wrong, but then how does it find the beginning of the next message?

Flow control: Full duplex transmission allowed, up to 255 un-ACK’d frames may be
outstanding. An ACK for frame n also acknowledges all previous frames.

Sequencing: Frames numbered 0-255, and each frame also carries the number of the frame
most recently received in sequence (i.e. with no gaps). Bad packets may be NAK’d
explicitly, or implicitly by not updating the response number. Retransmission is
go-back-to-n.

Code dependence: DDCMP is code-independent except for the use of SOH, ENQ, and DLE
as class flags.

5. HDLC, SDLC, and ADCCP (synchronous)

These three bit-oriented protocols are very similar, varying only in minor ways. HDLC is
the ISO standard, ADCCP is the ANSI equivalent, and SDLC is the IBM version. In fact,
HDLC and SDLC are (not necessarily compatible) subsets of ADCCP. All of these protocols
date from 1973-74. Bit oriented protocols address deficiencies in character protocols like
BSC or hybrid protocols like DDCMP: they are code independent, reliable (fully
error-checked), flexible, and (unlike BSC) can take advantage of full duplex connections.
The operation of this family of protocols tends to be rather complicated, mostly for historical
reasons, since they were originally designed for the multipoint master-slave environment,
and there is much ado about which "mode" a particular station is in, what commands it’s
allowed to issue, and so forth.

All frames are in a consistent format, and all are error-checked. The basic frame layout is:
+------+---------+---------+-------------+-----+------+
| FLAG | ADDRESS | CONTROL | INFORMATION | FCS | FLAG |
+------+---------+---------+-------------+-----+------+

The flag is the 8-bit quantity 01111110. The other fields are in fixed positions relative to
the flags, and of fixed sizes, except for the information (data) field which can contain zero or
more bytes. The minimum size frame is six bytes. There is no theoretical maximum.

Understanding Data Communication Protocols and Software Page 83

Transparency: The only byte that must not occur within a frame is the flag byte itself,
01111110. To prevent such an occurrence, any sequence of five consecutive 1-bits that
appears between the flag bytes has a 0-bit inserted after it by the transmitter, and any 0 bit
appearing after 5 consecutive 1-bits is stripped by the receiver.

Error Control: 16- or 32-bit CRC-CCITT frame check sequence (FCS).

Addressing: The normal address field is 8 bits, but with "extended addressing" it may be
extended to any number of bytes, by setting the high order bit to 1 when another byte
follows, and to 0 in the final byte.
Protocol: the Control Field is normally 8 bits, in this format:

+---+
| 8 7 6 5 4 3 2 1 | Bit number
+-----------------+-----+-----------------+-----+
| Receive Count | P/F | Send Count | 0 | Bit(1)=0: I-frame
+-----------------+-----+-----------+-----+-----+
| Receive Count | P/F | Function | 0 1 | Bits(2,1)=01: S-frame
+-----------------+-----+-----------+-----------+
| Modifier M1 | P/F | M2 | 1 1 | Bits(2,1)=11: U-frame
+-----------------+-----+-----------+-----------+

There is also a 2-byte extended format, in which the count fields are increased from 3 to 7
bits (why is this desirable?). The low order bits tell what type of frame we have:

• Information (I) frames, used for data transfer. These include the data to be
transferred, along with send and receive counts for sequencing and flow control.

• Supervisory (S) frames, used for acknowledgement, error recovery, and flow
control. These include RR (receive ready), RNR (receive not ready), REJ (reject,
i.e. go-back-to-n), and SREJ (selective reject). RR and RNR are found in all
implementations, but REJ and SREJ are useful only in two-way-simultaneous
(TWS, i.e. full duplex) connections, and even then are optional. S-frames
include a send count, but the receive count is replaced by a function code (RR,
RNR, REJ, or SREJ).

• Unnumbered (U) frames, used to control the link itself. These include
mode-setting commands, connection and disconnection, link reset, and
parameter exchange (XID). U-frames have "modifiers" (function codes) in place
of both send and receive counts. There is also a "frame reject" U-frame, used to
negatively acknowledge invalid frames.

Datalink connections can be "unbalanced" (master/slave) or "balanced". In an unbalanced
configuration, one station may send only "commands" and the other may only send
"responses" (most important functions, like I, RR, RNR, and REJ, are considered both
commands and responses). In balanced configurations, both stations can send commands
and responses.

Unbalanced configurations can be in "normal response mode", in which they use the
Poll/Final (P/F) bit to control line access, or "asynchronous response mode" (anyone can
transmit any time). (Note, the use of the word "asynchronous" in this context has nothing
to do with asynchronous serial transmission, it just means that frames are exchanged
without any special synchronization between the two partners.) Balanced configurations
are always in asynchronous response mode. There are three "classes of procedure", one for
each of these combinations.

Page 84 THE ISO DATALINK LAYER

P/F Master (Poll) Slave (Final)

0 Slave should not answer More messages to come

1 Slave should answer Final message of sequence

Use of the P/F Bit

These protocols incorporate a number of commands, sent in S-frames, to control the flow of
frames, including Receive Ready (RR, grants permission to send), Receive Not Ready
(denies permission to send, or requests that sending stop), Reject (REJ, valid frames
rejected because earlier ones missing), and Selective Reject (SREJ, specified frame
rejected). RR and RNR are appropriate to Two-Way-Alternate (TWA, i.e. half duplex)
connections, and REJ and SREJ are appropriate to Two-Way-Simultaneous (TWS, i.e. full
duplex) connections.

Sequencing, flow control, and error recovery are accomplished via the send and receive
counts. Each partner numbers its own frames using a 3-bit modulo-8 counter (or, in
extended versions, 7-bit modulo-128), and also includes in its message the number of the
most recent valid frame it has received. Corrupted frames need not be explicitly NAK’d,
rather, the receiver simply does not update its receive count. The sender eventually
retransmits.

In full duplex connections, the sequencing scheme allows sliding windows, either with
go-back-to-n (REJ) or selective retransmission (SREJ), depending on the capabilities of the
partners.

The window size is negotiated at connection establishment. It may be as large as modulo−1
for go-back-to-n (REJ), or modulo/2 − 1 for selective retransmission (SREJ). The larger the
window size, the better the chances for continuous transmission. Smaller window sizes
may be used for flow control.

SDLC is generally used in unbalanced normal-response mode, in accordance with IBM’s
pervasive philosophy, which stresses centralized management and control, hierarchical
topology, and half-duplex communication. This is a reflection of the early development of
SNA, which assumed an environment consisting of a central mainframe and many attached
polled multipoint terminals and devices, rather than a general host-to-host (peer-to-peer)
network. SDLC implementations generally do not include the addressing and count field
extensions, nor the 32-bit FCS, nor selective reject (SREJ). SDLC is specified in "IBM
Synchronous Data Link Control General Information", IBM document GA27-3093 (there
may be a newer version).

HDLC, and in particular its subsets LAP (Link Access Procedure), LAPB (an improved
LAP), and LAPD, are widely used. LAPB is an asynchronous balanced implementation of
HDLC used in X.25 networks, and LAPD is the link level for ISDN.

ADCCP (reference 1) in its fullness serves more as a reference model than a datalink
protocol. Even its subsets, like HDLC, generally support only a few of the many possible
options. HDLC is specified in ISO standards 4335, 7809, and 7498, which replace some
older versions and allow for the various extensions (modulo-128 counts, etc).

Understanding Data Communication Protocols and Software Page 85

6. ANSI/IEEE 802 Standards

For local area networks, standards bodies (ANSI and the IEEE) have divided the datalink
layer into two sublayers: Media Access Control (MAC, the lower sublayer), and Logical Link
Control (LLC, the upper sublayer).

ANSI/IEEE Standard 802.3-1985 is a MAC standard for Ethernet or other broadcast
networks, in which contention is resolved using CSMA/CD. There are equivalent standards
for token bus (802.4), and token ring (802.5, ANSI X3.139).

MAC handles access to the physical medium employing the appropriate contention
technique (like CSMA/CD), and it handles framing and error checking. In Ethernet, for
instance, a frame looks like this:
Name Length
PREAMBLE 7 bytes, for circuitry synchronization
SFD 1 byte, Start Frame Delimiter = 10101011
DESTINATION ADDRESS 2 or 6 bytes
SOURCE ADDRESS 2 or 6 bytes
FRAME LENGTH 2 bytes
LLC DATA variable
PAD enough to achieve minumum frame size
FCS 32-bit CRC
The preamble serves a purpose similar to the SYNs that precede a block in synchronous
transmission -- to get the receiving circuitry prepared for the data that is about to arrive.
The start-frame delimiter is the reference point by which the other fields (addresses,
length, data, and FCS) are located. So Ethernet frames achieve transparency via byte
count, like DDCMP.
An FDDI frame is more like an HDLC frame (see reference 2):

Name Length
PREAMBLE 8 or more bytes, for circuitry synchronization
STARTING DELIMITER 1 byte
FRAME CLASS 8 bits, C L F F Z Z Z Z
DESTINATION ADDRESS 2 or 6 bytes
SOURCE ADDRESS 2 or 6 bytes
INFO variable
FCS 32-bit CRC
ENDING DELIMITER 1 byte
FRAME STATUS 1 or more bytes
but the (draft) standard does not state how transparency is achieved.

The MAC sublayer ignores frames with incorrect CRCs, and therefore delivers only
correctly-transmitted frames to the LLC sublayer. Transparency is achieved using a byte
count. The addresses are Ethernet hardware addresses (every Ethernet controller in the
world is supposed to have a unique address).

ANSI/IEEE Standard 802.2, Logical Link Control (LLC), describes two protocols that may
be used at the upper datalink sublayer. A "connectionless" service (Type 1 operation)
allows PDUs to be exchanged without the need for datalink connection establishment, and
without acknowledgement or error recovery. All of this is left to the higher layers.

Type 2 operation is similar to asynchronous balanced HDLC operation, with modulo-128

Page 86 THE ISO DATALINK LAYER

sequence numbers, but without the framing or error checking, which is done by the MAC
sublayer.

Thus the IEEE 802 and ANSI FDDI standards assign the "classic" datalink functions --
framing and error-checking -- to one sublayer (MAC), and the "higher-level" functions --
connection establishment, flow control, sequencing, and error recovery -- to another (LLC).
REFERENCES:

1. ANSI X3.66-1979, "Advanced Data Communications Control Procedure",
American National Standards Institute, 1430 Broadway, NYC 10018.

2. ANSI X3.139-198x, Fiber Distributed Data Interface (FDDI) Token Ring
Media Access Control (MAC)", X3 Project 380-D Draft Proposed Standard,
1986.

3. ANSI/IEEE Std 802.2-1985/ISO-DIS 8802/2, "Logical Link Control", IEEE and
Wiley-Interscience, 1984.

4. Brodd, W.D., Operational Characteristics: BSC versus SDLC, Data Com-
munications, Oct 1983.

5. Brodd, W.D., HDLC, ADCCP, and SDLC: What’s The Difference?, Data
Communications, Aug 1983.

6. Edelson, R.E., et al., ‘‘Voyager Telecommunications: The Broadcast from
Jupiter,’’ in Science, V 204 # 1, June 1979.

7. Hamming, R.W., Error Detecting and Error Correcting Codes, Bell System
Technical Journal, v29, pp.147-160, April 1950.

8. Meijer, A., and P. Peeters, "Computer Network Architectures", Computer
Science Press, 1982, pp.20-21 (datalink overview), 36-51 (HDLC), 148-156
(DDCMP), and 358-360 (ISO datalink layer definition).

9. Martin, J., "Teleprocessing Network Organization", Prentice-Hall, 1970.

10. McNamara, J.E., "Technical Aspects of Data Communications", 2nd ed.,
Digital Press, 1982, pp.146-167 (Bisync, DDCMP, SDLC).

11. Odenwalder, Joseph P., "Error Control", chapter 10 of "Data Communications,
Networks, and Systems", T.C. Bartee, Editor, Howard W. Sams & Co., 1987.

12. Robinson, J., "Reliable Link Layer Protocols", Network Working Group
RFC935.

Understanding Data Communication Protocols and Software Page 87

5. OSI LAYER 3 - THE NETWORK LAYER
The network layer and its sublayers (layers 1-3) form the "communications subnetwork",
which is often implemented outside of the host computers. It provides a kind of "data pipe"
between end systems, allowing them to communicate with one another without regard for
the characteristics of the underlying communication media, or the topology of the network.

Recall that the physical layer delivers bits, in sequence, from one node to the next, and the
datalink layer encapsulates these bits into messages that can be error-checked.
7. Application Application

| ^
V |

6. Presentation Presentation
| ^
V |

5. Session Session
| ^
V |

4. Transport Transport
| ^
V |

3. Network Network Network Network Network
| ^ | ^ | ^ | ^
V | V | V | V |

2. Datalink Datalink Datalink Datalink Datalink
| ^ | ^ | ^ | ^
V | V | V | V |

1. Physical------>Physical------>Physical------>Physical------>Physical

The media connecting the nodes in a network, and for that matter the associated datalink
protocols, may be different for each hop:

+--------+
Ethernet | | Leased Synchronous Line to Cleveland
-----------------------------+ Node +----------------------------
802.3 LLC Type 1 datalink | | HDLC datalink

+--------+

The network layer routes packets from node to node through the network until they reach
their ultimate destination (end system). The network layer must know in which direction
to relay a packet, which means it must know not only the layout ("topology") of the network,
but possibly also the prevailing conditions -- which nodes are up, which are down, which of
several possible routes is the least congested.

Like any ISO layer, the network layer does two major things:

1. Provides a standard interface to the upper layers, which shields them from
having to know anything about the lower (datalink and physical) layers.

2. Does its own work, in this case routing packets through the network.

Page 88 OSI LAYER 3 - THE NETWORK LAYER

NETWORK LAYER INTERFACE TO THE TRANSPORT LAYER
You can think of the network layer as a subroutine called by the transport layer. It
provides an interface that is independent of underlying communication medium in all
things other than quality of service (e.g. you can’t ask for 10Mbps from a 9600 baud line,
but transport layer uses the network the same way for all types of connections). The
network layer is invoked with parameters like:

• Desired operation: establishment (OPEN), maintenance (exchange of network
information), and release (CLOSE) of network connections, which appear to be
point-to-point connections to the transport entities. And of course, data
transfer -- transparent data transfer between transport entities.

• When OPENing a connection, Quality Of Service (QOS) parameters, incl.
permissible error rate, throughput, delay, sequencing, etc. A bursty interactive
application like virtual terminal service might choose a low-delay (no-satellite)
link, whereas batch-mode applications might opt for high bandwidth, regard-
less of delay. For a given type of service, there is a known cost -- very
important in management of long-haul network connections. On public
packet-switched networks, which provide layer 1-3 service, charges are at
known rates -- so many cents per packet.

• When doing data transfer, address of message to send, and network address to
send it to. The network layer uniquely identifies each of the end systems
(transport entities) by their network addresses, possibly independently of the
addressing used by underlying layers.

• When doing maintenance functions, request for expedited transfer of
(limited-size) NSDUs, subject to separate flow control constraints (optional),
usually used only for network management.

The "network layer subroutine" will return some code as to whether it succeeded or failed,
within the limits set by the quality of service parameters.

FUNCTIONS OF THE NETWORK LAYER
This is the work that the network-layer subroutine actually does, carried out by
peer-to-peer protocol of the network layer.

• ROUTING & RELAYING within a network, and possibly between networks.

• MULTIPLEXING network connections onto a single datalink connection.
(...show picture...)

• SEGMENTING or BLOCKING may be done, so long as NDSU boundaries are
preserved, i.e. so long as it is done transparently to the transport layer. When
segmentation is done, then so must sequencing. (Why?)
(...show picture of blocking, segmenting...)

• SEQUENCING, when requested by transport entities, or when segmenting.

• FLOW (CONGESTION) CONTROL.

• Error detection, based on error notification from datalink layer, possibly
augmented according to quality of service (QOS) parameters.

• Error recovery, depending on QOS parameters.

Understanding Data Communication Protocols and Software Page 89

• Network layer management.

The network layer services the information given to it by the transport layer by
encapsulating it in network-layer protocol information, to form a "packet", and then gives
the packet to the datalink layer for transmission.

+-----+------+
Transport Layer: | PCI | TSDU |

+-----+------+
|
V

+-----+------------+
NETWORK LAYER: | PCI | NSDU | "packet" = NPDU

+-----+------------+
|
V

+------+-------------------------+-----+------+
Datalink Layer: | FLAG | DSDU | FCS | FLAG | "frame"

+------+-------------------------+-----+------+
|
V

Physical Layer: (transmits the frame)----------------->

(SDU = Service Data Unit)
(PDU = Protocol Data Unit)
(PCI = Protocol Control Information)

The packet finds its way through the network to the destination system using the
prevailing routing strategies, known to and implemented by the network layer.

The network layer allows transport entities to transfer data between themselves, inde-
pendent from routing and relay considerations within a network or between adjacent
networks, shielding them from knowledge of how the underlying datalink connections are
used.

Let’s concentrate on the two primary functions of the network layer: ROUTING and
CONGESTION CONTROL.

On simple point-to-point connections, such as those between Kermit or Xmodem partners,
there’s no question of routing. Each station is connected directly to the other, so the
network layer is "null".

On BROADCAST NETWORKS like Ethernet, or networks like Token Ring or Token Bus,
in which all stations are connected to a common medium and all "visible" to each other,
access is controlled by the Media Access Control (MAC) function of the datalink layer. In
this case, the network layer has little or nothing to do except address translation (Address
Resolution Protocol), and possibly internetwork routing, discussed later.

ROUTING
When a packet arrives at a node, the node must decide what to do with it. Either the
packet is for itself (in which case, it is absorbed), or it is for another node. In that case, the
question is simply: on which line should the packet be forwarded?

Page 90 OSI LAYER 3 - THE NETWORK LAYER

^
| Line A
|

+--+--+
Arriving | | Line B
------------>+ +----------->
Packet | |

+--+--+
|
| Line C
v

How does the node make this choice?

Routing Tables

Network packets contain a source and destination address, or just a destination address, or
a virtual circuit number. Each routing node uses this information to decide which line to
forward the packet on. It looks up the address in its routing tables. If the address is only
reachable via one route, then that one is used. Otherwise, it must make a choice.

In a star network, it’s simple:
104
/ | \
/ | \

102 103 104

Example of a routing table for node 104, and the corresponding network (NEXT means
"next node", i.e. which line to send the packet on).

ADDRESS NEXT 104----------101
100 101 | \ /\
100 103 | \ / \
101 101 | \ / \
102 102 102 \ / \
103 103 | \ / \
103 101 | 103--------100
104 - |
105 102 105

With a table like this, the relay node "simply" looks up the destination address and then
picks one of the entries for that address, using some criterion to choose the best path.

Since there may be more than one path through the network from one node to another,
there is always the possibility that packets will get into a "LOOP". This can happen in the
illustration above if 102 wants to send a packet to 100 and:
104 chooses 101 as the best route to 100
101 chooses 103
103 chooses 104

Seems silly. How could this happen? There are many possible scenarios, but they all boil
down to the fact that we have many computers operating independently, and their routing
tables might not be consistent.

Where do the routing tables come from? They may be:

. maintained locally (by the manager of each system), . maintained centrally and

Understanding Data Communication Protocols and Software Page 91

periodically downloaded to each network node, . maintained in a distributed way.

Styles of Routing

There are two major styles of routing: fixed and dynamic, and table management may be
either centralized or distributed:

Centralized Distributed
+-------------+-------------+

Fixed | | |
+-------------+-------------+

Dynamic | | |
+-------------+-------------+

In practice, there are several popular routing styles:

• source (sender specifies route)

• fixed (static, directory)

• adaptive (fixed, but can adapt to topology changes)

• virtual circuit (VC) (dynamic setup, fixed thereafter)

• dynamic (can adapt to changing traffic conditions)

In source routing (rarely used), the sender of a packet specifies the entire route to take.
The best-known example of source routing is the address field on Unix UUCP mail
("foo!bar!baz!blort!cucca!christin"). Source routing is also used in network management,
e.g. when the network layer wants to see if a message can be sent along a certain route, and
how long it will take.

FIXED ROUTING is used in many real networks. Often, the routing tables are coordinated
by letters or phone calls, or sometimes not coordinated at all. Once a network grows
sufficiently large, a "network information center" tends to emerge, whose main function is
to keep track of the host and routing tables, and feed them periodically to the members.

These procedures require each system manager to install the changes manually. There’s no
guarantee that this will happen, and certainly not that it will happen everywhere at the
same time, so the routing tables tend to become increasingly inconsistent.

If routing table updates can be applied automatically from a "routing control control
center", then a fixed-routing network can adapt to changing network conditions -- not only
topology changes, but even traffic patterns, if the updating takes place frequently enough.
For instance, each node might send a message to the control center once a minute, telling
its queue lengths, packets transmitted per second, etc, and the center can recompute the
optimum routes and download them to the nodes.

But there are always tradeoffs. Obviously, the network would depend heavily on the
continuous and correct operation of the control center. And the larger the network, the
bigger and more powerful the control center must be, the higher the network bandwidth in
its vicinity.

Finally, even with with automatic update of routing tables, it is possible that some nodes
will get the message later than others, allowing the network to operate at times with
inconsistent routing tables, which can result in looping.

Page 92 OSI LAYER 3 - THE NETWORK LAYER

Virtual Circuit Routing

In VC networks (of which X.25 networks are the best-known example), the route is
determined dynamically at CONNECTION ESTABLISHMENT, and remains fixed
throughout the connection. Each component of the network - node, gateway, host,
interface, etc -- must maintain state information for each virtual circuit that goes through
it, including routes, addresses, sequence numbers, flow control status. The VC number is a
shorthand pointer to this data structure, so that packet relay is an easy chore for routing
nodes (like a file descriptor).

In a VC, packets are always delivered in order. This is ensured by SEQUENCE numbers
and by the fact that packets can’t overtake each other if they all follow the same route.

CONGESTION can be controlled because each node knows what connections it must
allocate resources for.

The DISADVANTAGE of VC routing is that resources (transmission time, buffers, etc) can
go idle on a given path, while other routes may be badly congested. Recovery from "bad"
errors on a virtual circuit must be done with a "reset" in which all nodes on the path
reinitialize their data structures.

Virtual circuits are appropriate when relatively long-term connections are needed, e.g. for
bulk data transfers, virtual terminal sessions, etc. The simplified routing is more efficient,
and worth the extra circuit setup time.

Dynamic Routing

Dynamic routing is the key feature of "connectionless" networking (found on local area
networks, and on wide-area networks like the ARPANET), in which there is no connection
establishment or release phase at the network layer. Each packet finds its own way
through the network, and packets may be delivered out of order to the end system. Each
packet must carry a complete destination address (such packets are called "datagrams"),
and each node must do potentially complicated routing lookups and computations. The
advantage is that this strategy allows resources to be allocated more fairly network wide.
However, the burden falls on the end system, rather than the subnetwork, to ensure
reliable data delivery via sequencing, retransmission request, etc. Connectionless network-
ing is appropriate to short, limited communications: database transactions, one-to-many
communication (multicast, broadcast), sampling of scattered data sources, and internal
network functions (nodes exchanging routing information).

The most common dynamic routing strategy is called LEAST-COST routing. Costs are
assigned to each link, and the path of least cost is used. If the cost of each link is the same,
then the cost from A to B is equivalent to the number of hops -- this is called "shortest-path"
routing.

More often, costs are assigned based on the characteristics of the line: its speed, error rate,
length, or even the monthly bill.

Costs may be fixed per link, or adapt to changing conditions (delays, noise). Packets may
be stamped with departure and arrival times to help nodes calculate costs. Nodes send
special update messages to each other about changing costs; the bigger the network, the
more of its bandwidth is consumed by these updates. Here is an example routing table
with costs assigned to each link:

Understanding Data Communication Protocols and Software Page 93

(3)
ADDRESS NEXT COST 104----------101
100 101 10 | \ /\
100 103 15 (7)| \ / \
101 101 3 | \(12) / \(7)
102 102 7 102 \ /(24) \
103 103 12 | \ / \
103 101 27 (4)| 103--------100
104 - 0 | (3)
105 102 11 105

The looping problem crops up here too. Least-cost algorithms, when applied continuously
within a network, can change costs in ways that can cause loops. In the diagram below, for
instance, if a message is to go from A to D, it will travel the path (A,B,C,D) of lowest cost
(1+3+4=8). However, suppose that while the packet is enroute from B to C, the cost of the
(C,D) link changes from 4 to 20. Then C will send the packet back to B. But B will send it
back to C, etc etc (assuming that B had not yet learned the new cost from C to D).

B
/|\

(1)/ | \(10)
/ | \
/ | \
A |(3) D
\ | /
\ | /

(5)\ | /(4)
\|/
C

This situation will correct itself eventually, if B finds out the new cost of the (C,D) link.
But if updates occur infrequently, our poor packet will resonate between B and C many,
many times.

Some network protocols avoid looping by maintaining a "node visited" list in the network
packet. Since this technique can be very expensive, it is usually used only in virtual circuit
networks, where it needs to be done only once on the call setup packet. But a loop itself
might change conditions sufficiently to cause itself to be broken -- our "resonating packet"
might raise the BC link cost beyond the BD cost, and then B would finally send the packet
straight to node D. There are also other loop elimination techniques, including node-counts,
packet lifetime control, optimality principles, etc.

FLOW CONTROL AND CONGESTION CONTROL
Besides routing, the other important function of the network layer is flow and congestion
control. In fact, congestion control is a central issue in dynamic routing, where the object is
to choose the least congested route.

Flow Control Mechanisms

There are two basic flow control mechanisms, the same ones used at the datalink level:
windowing and explicit flow control commands. The send and receive sequence counts that
appear in HDLC frames can also be used in connection-oriented network packets. When a
network node does not want to receive any more packets over a particular network
connection, it can simply withhold acknowledgement by not updating its receive count.
Eventually, the sender’s window will fill up and it will stop transmitting. If incoming
traffic needs to be halted immediately, a special network-level command (equivalent to
datalink commands like RNR) can be sent.

Page 94 OSI LAYER 3 - THE NETWORK LAYER

Transmission Queues

Because flow control occurs, each network node must have a mechanism for storing
(buffering) packets that can’t be transmitted right away. This mechanism is called a
"queue", or FIFO (first-in-first-out) list. Network nodes, like any computers, have limited
memory, and so the queues are of finite size. The network node maintains a separate
transmission queue for each line. When a packet comes in, the node determines from its
routing strategy which line to forward it on, and then places it in the queue for that line. If
the queue starts to get too full, then the node will want to refuse packets that need to be
forwarded on that line until the queue can be emptied. Using RNR, or "source quench", or
withholding acknowledgments, for these packets will move the queue "upstream".

Why must flow control occur on both the datalink level and the network level between two
adjacent nodes? Let’s look at a real network protocol for an illustration.

THE X.25 NETWORK PROTOCOL
CCITT Recommendation X.25 does not describe a network architecture, but rather an
"interface" between a DTE (that is, a computer) and a DCE which is itself an interface to a
packet-switched network. In other words, X.25 describes the services it provides to the
transport layer, but gives no particulars about the methods used. In a way, it’s almost like
RS-232, which specifies the interface between a terminal and a modem -- the terminal is
totally ignorant of how the modems deliver the data to the terminal on the other end.
+-----+ X.25 interface +-----+ () +-----+ X.25 interface +-----+
| Dte +----------------+ DCE +---(network)---+ DCE +----------------+ DTE |
+-----+ +-----+ () +-----+ +-----+

The X.25 protocol has three layers:

1. physical (X.21),

2. datalink (LAPB, a subset of HDLC), and

3. network (X.25 itself).

The X.25 network protocol is the most widely cited (and possibly implemented) example of a
network layer protocol. There are those who contend that X.25 is really more like a
transport protocol, since it delivers error-free packets in sequence end-to-end, and is not
concerned with routing.

Types of Service

X.25 provides three types of service: Permanent Virtual Circuit (PVC), Virtual Call (or
Virtual Circuit, VC), and Fast Select. PVC means the path between two end systems is
always available. VC means that a "call" must establish the circuit, then it is used, then it
is released. Fast select means a circuit is established, used, and released all in a single
message. There is no datagram ("connectionless") service in X.25. But that does not mean
datagrams cannot be used "underneath" it at the datalink level (as they are in certain X.25
networks, like Canadian Datapac).

Understanding Data Communication Protocols and Software Page 95

Addressing

The end system (DTE) has a network address. Between the DTE and the DCE are 4096
"logical channels", allowing for up to 4096 network connections per DTE. A process
initiating a connection simply chooses a free logical channel.

Packet Format

X.25 packets are transmitted in the I-field of LAPB datalink packets. Recall that LAPB is
an "asynchronous balanced" subset of HDLC. Here’s a LAPB packet:
+------+---------+---------+-------------+-----+------+
| FLAG | ADDRESS | CONTROL | INFORMATION | FCS | FLAG |
+------+---------+---------+-------------+-----+------+

^
|

X.25 packet goes in here

(Looks just like an HDLC packet.) Recall that the HDLC CONTROL field contains Send
and Receive sequence numbers:

8 7 6 5 4 3 2 1 Bit number
+-----------------+-----+-----------------+-----+
| Receive Count | P/F | Send Count | 0 | Bit(1)=0: I-frame
+-----------------+-----+-----------------+-----+

Now, inside the HDLC INFORMATION field goes the X.25 packet, which looks like:
1 2 3 4 ... Byte number

+--------------+---------+---------+-------------+
| Q D xx GROUP | CHANNEL | CONTROL | INFORMATION |
+--------------+---------+---------+-------------+

The first four bits are called the Group Format Indicator (GFI):

• The Q (qualifier) bit allows data packets to be split into two flows, e.g.
command and data.

• The D bits requests end-to-end (rather than DCE-to-DTE) confirmation.

• The xx bits tell whether the packet has 3-bit (xx=01) or 7-bit (xx=10) sequence
numbers.

The GROUP (4 bits) and CHANNEL (8 bits) fields specify the logical channel number (12
bits total, 0-4095) of the network connection. The INFORMATION field can be up to a
maximum length chosen by the subscriber (16-4096 bytes).

The X.25 CONTROL field looks a lot like the HDLC CONTROL field:
8 7 6 5 4 3 2 1 Bit number

+-----------------+-----+-----------------+-----+
| Receive Count | M | Send Count | 0 | Bit(1)=0: data packet
+-----------------+-----+-----------------+-----+

The xx bits of the X.25 packet are like a length indicator for the CONTROL field. If the xx
bits of the GFI are set to 01, then the count fields are 3 bits each, and the CONTROL field
is one byte long. If xx is 10, then the counts are 7 bits each and the CONTROL field is two
bytes long. The M (more) bit occupies the same position as the P/F bit in the HDLC control
field, and performs an analogous function -- it means that there is "more to come". This is

Page 96 OSI LAYER 3 - THE NETWORK LAYER

used when DTE packets are segmented by the network layer in order to fit into small
network node buffers, so that the receiver will know how to reconstruct the original packet
upon receipt.

X.25 CONNECTION ESTABLISHMENT AND RELEASE
On virtual circuits, a "call" is placed from one DTE to another using a Call Request control
packet, choosing a free logical channel for this purpose. The called DTE’s address is in the
information field of the call request packet. Addresses are assigned according to the X.121
Numbering Plan:
P ZXXX NNNNNNNNNN

which specifies world zone, country, network within country, and DTE within network. If
the call is completed (answered), a virtual circuit has been set up on that channel, and all
packets containing that channel number will travel on that virtual circuit to the called
DTE. Calls are terminated, and virtual circuits and logical channels released, via a Clear
request control packet.

If just a very short message is to be transferred, Fast Select service may be used, in which
call setup, data transfer, and call release are all combined into a single packet.

X.25 DATA TRANSFER

After call setup, data is transferred in "data packets". The GFI bits are of special interest
here. If the Q bit is set to 1, then the information field of the packet contains control
information (e.g. commands to the PAD), otherwise it contains user data. The D bit means
that the packet should be confirmed by the end system, rather than the local DCE (this is a
can of worms...). The M bit is used to indicate that a packet has been segmented and must
be reassembled on the other end.

If unrecoverable errors occur, the logical link may be "reset" by a special command packet.
This means that all sequence numbers go back to zero, and all packets currently in transit
are discarded. X.25 itself cannot recover from a reset; it is left to the transport layer to
decide which packets to retransmit.

X.25 FLOW CONTROL

Flow control occurs only during data transfer phase. Clear, Reset, or Restart command
packets are not subject to flow control, and may "pass" data packets, which can cause them
to be lost.

Explicit flow control occurs only between the DTE and DCE -- not end-to-end. It can be
accomplished by explicit commands -- RR (Receive Ready), RNR (Receive Not Ready), as in
HDLC) -- and is also achieved by windowing, which in turn depends on packet sequence
numbers (send and receive counts). End-to-end flow control occurs only as a result of "back
pressure"... DTE1 sends RNR to DCE1, so eventually DCE1’s buffers fill up, and it tells
DCE2 to stop sending, and eventually DCE2’s buffers fill up too, so it sends RNR to DTE2.

Why does each packet have two sets of send and receive counts? The LAPB (datalink)
numbering is sequential for all packets sent between DTE and DCE, i.e. it does not
distinguish among virtual circuits, because the datalink layer does not know they exist!
The X.25 packet sequence numbers are per virtual circuit.

The X.25 sequence numbers allow the system at the other end of the network connection to

Understanding Data Communication Protocols and Software Page 97

determine whether all packets have arrived in sequence, and it allows flow control to be
performed at the network level, per network connection. For instance, if the DCE had
several paths into the network, and one of them was congested, it should not prevent the
DTE from transmitting over logical connections that use the other, uncongested paths.

C
/ <---(congested path)

DTE /
A------------B-----D

DCE \
\ <---(clear path)
E

If bit 1 in the control field is 1, then the X.25 packet is a control, rather than data, packet.
The RR, RNR, and REJ control packets are used for explicit flow control in X.25 network
protocol, just as they are in HDLC and LAPB datalink protocols. RR means Receive-Ready,
and also acknowledges all packets up to the one indicated in its receive count. RNR means
Receive-Not-Ready (stop sending packets!). REJ (optional) requests retransmission of all
packets starting with the indicated sequence number.

Flow control between the DTE and DCE is therefore accomplished in two ways: window
size and explicit RR and RNR commands. The receiver controls the rate at which packets
are sent to it. It will slow down this rate if (a) packets arrive faster than it can process
them, or (b) it has been flow-controlled by the next receiver along the virtual circuit. Thus
congestion along the network can be avoided as the flow control mechanism propogates
"upstream". (Think of a traffic jam on the LIE...)

X.25 ROUTING

Routing, the classic function of the network layer, is simply not an issue in X.25. The DTE
"calls" the other DTE and gets a virtual circuit through a packet switched network, the
details of which are entirely unknown.

OTHER EXAMPLES OF NETWORK LAYERS
Networks appear to fall into two categories: those that make the customer worry about
routing, and those that take care of it themselves. IBM SNA and DEC DNA impose a lot of
management headaches on the users. Typically, each routing node requires detailed
configuration by its owner, on a continuing basis.

Other networks, like X.25 and Arpanet, provide the customer with a "communications
subnetwork" that handles the physical, datalink, and network layers, plus a simple
interface between the host and the network.

In all cases, however, there must be agreement among all members of the network as to
what the address of each host is, and preferably also a common mapping of host name to
host address, so that users don’t have to remember long cryptic numbers when com-
municating over the network.

IBM SNA

SNA networks are divided hierarchically into sections called subareas. This structure
mirrors IBM’s physical network architecture, which is also hierarchical; subarea nodes are
typically the hubs of star-shaped clusters, so that routing within a subarea is very simple.
SNA routing functions (called Path Control) are partitioned accordingly. Virtual Route
Control makes logical links among subareas, multiplexing the various sessions and

Page 98 OSI LAYER 3 - THE NETWORK LAYER

handling flow control (using windows that can dynamically grow and shrink). Explicit
Route Control determines the actual physical routes used; the routing tables are
predefined, not dynamic. Finally, Transmission Group Control maps multiple physical
links into one logical link, so that multiple links between two subarea nodes can be used to
increase throughput. SNA architecture originally allowed only 64 subarea hosts and 64K
"logical units". Networks soon grew too large for this restriction, now with "extended
addressing" there can be 256 hosts and 8M logical units.

DEC DNA

Originally, a DECnet network could have up to 254 nodes. Demand for network
connections soon outstripped supply, so Phase IV of DECnet allows up to 63 areas, with
1022 nodes within an area. Routing occurs at the DECnet "Transport" level (misleading
terminology), according to a forwarding database maintained by the system manager in
each routing node. There may also be "end nodes" that do not perform any routing
functions. Paths are fixed along the chosen route unless (a) the network topology changes
(a system goes down, or a line is broken), or (b) the cost assigned to a given link is changed
(by operator command). Loops are avoided via a field in the packet that contains a
nodes-visited count. If this number exceeds a defined threshold for the route, or if the
packet sticks in the network beyond its maximum defined lifetime, it will be discarded.

DOD ARPANET

ARPANET uses distributed adaptive datagram routing. It pioneered this approach in the
late 1960s, and has stuck with it, one of the few large-scale networks that uses this
approach. ARPANET nodes send routing tables and statistics to each other periodically.
For manageability, ARPANET is broken up into a distinct communication subnetwork
composed of IMPs (Interface Message Processors) and their interconnections, which
perform the routing and lower-level functions, plus the hosts themselves, attached to the
IMPs using any of various IMP-Host protocols depending on the bandwidth of the
attachment. The IMPs exchange routing information among themselves at very frequent
intervals, and are also subject to a certain amount of central control from "headquarters".
The hosts have host tables downloaded to them periodically from the network control
center.

INTERNETWORK ROUTING
The topic of routing must also include routing between networks. In this case, networks
themselves act like nodes -- the packet traverses one network after another until it finds
the right one, and the traverses its nodes until it reaches the final destination. For this to
work, there must be mechanisms for networks to discover each other, to determine
reachability, to route packets among themselves, etc. The same routing considerations
apply to interconnected networks as apply to the interconnected nodes within a network.
Thus, routing can occur at two levels (intranetwork and internetwork), and therefore the
network layer is often divided into two corresponding sublayers.

Two networks are connected by a "gateway", which has a physical interface to each network
and an address on each. If we consider a network to be a collection of nodes that know each
other’s addresses, then a gateway is a special node that knows the addresses of TWO
networks, and has routing tables for both networks in its memory.

There are two major internetworking strategies: The first assumes that the networks to be
interconnected are all connection-oriented, i.e. that packets arrive at the gateway properly
sequenced, and also that the networks are closely matched in services. This is called the

Understanding Data Communication Protocols and Software Page 99

"hop-by-hop" approach. The second, which requires an explicit Internetwork Protocol (IP),
assumes that the networks are a mix of connectionless and connection-oriented, with
differing services.

The difference comes in where the end-to-end reliability functions are performed. In
hop-by-hop interconnection, internetwork routing and end-to-end reliability are combined
in the network layer, as if each hop were a miniature transport connection. The network
layer of all network nodes must support this style of operation, even for local (intranetwork)
communication. This can add overhead to local traffic. The end systems, however, need no
particular software support.

IP concentrates on dynamic routing (the real business of a network protocol) and leaves the
transport layer on the end system to deal with reliability issues. In the IP approach, the
internetworking overhead occurs only when required for internetwork traffic. But the end
systems must support an IP protocol, so that the network layer is broken into two
sublayers: IP on the end systems, and intra-network routing on the network nodes.

Internetworking Examples:

• CCITT X.75

• ARPANET Internet Protocol (RFC791)

• ISO 8648, "Internal Organization of the Network Layer"

• ISO 8473, "Protocol for Providing Connectionless-mode Network Service"

• ANSI X3S3.3 86-118, ISO TC97/SC6/N 4053, ARPA RFC995 (April 1986)

X.75 INTERNETWORK PROTOCOL

CCITT X.75 is a protocol for interconnecting two X.25 networks; it is not a generalized
internetworking protocol. X.75 is essentially an enhanced version of X.25 that operates
gateway-to-gateway (DTE to DTE, rather than DTE-to-DCE like X.25). X.75 is transparent
to the user of an X.25 network. That is, the user is unaware that multiple networks are
involved.

X.75 uses the similar call setup and packet procedures to X.25, but allows 56Kb links,
multiple links between gateways for redundancy and higher throughput, 7-bit sequence
numbers at frame level, and includes additional fields in the call setup packet.

X.75 gateways are like any virtual circuit routing node -- they have to keep a window full of
packets for each connection, along with state history, etc, so that a virtual circuit is
maintained end to end.

ARPANET IP PROTOCOL (1981)

Because the ARPANET is composed of many interconnected local networks, there is also an
Internetwork Protocol (IP). It provides no guaranteed delivery, no flow control, no
sequencing. All that is left up to other layers (the ARPANET transport layer, TCP, which
provides end-to-end retransmission and sequencing, or to the underlying network). Each
datagram is sent with a specified Quality of Service, Time to Live (self-destruct timer),
Options (timestamps, security, special routing), and a Header Checksum. There is no error
control for data, no acknowledgments (either end-to-end or hop-by-hop), no retransmission
at this level. If an error is detected, the datagram is simply discarded.

Page 100 OSI LAYER 3 - THE NETWORK LAYER

Internet addressing is via a 32-bit address, divided into an 8-bit field (to designate which
network), followed by a 24-bit field (the address within the network). (There are variations
on this.) When a packet must cross a network boundary, it goes through an Internet
gateway, which implements the Internet Protocol, and also the gateway-to-gateway protocol
(GGP) to coordinate routing and other control information, and exterior-gateway-protocol
(EGP) to convey net reachability information between neighboring gateways (Are You
There?).

IP works transparently on top of communication subnetwork (network layer & below):
+-----------+ +-----------+

A--| network X |--B--| network Y |--C
+-----------+ +-----------+

A thinks it’s sending packets to B. When B gets a packet, it passes it up to the next layer,
which turns out to be IP rather than Transport. IP sees that the packet is really for C on
network Y, so tells network layer of network Y to send it to C.

Thus, IP is transparent to the network. It requires software on user end to be more
intelligent -- IP protocol has to be built into hosts and gateways. In X.75, the
internetworking is transparent to the user, and is built into the network, but the gateways
must be more intelligent in order to maintain a virtual circuit across networks. And IP
places the burden on the transport layer to provide error detection and correction -- packet
sequencing, etc. But the TCP/IP transport layer does this anyway.

A summary of the contents of the internet header follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Version| IHL |Type of Service| Total Length |
+-+
| Identification |Flags| Fragment Offset |
+-+
| Time to Live | Protocol | Header Checksum |
+-+
| Source Address |
+-+
| Destination Address |
+-+
| Options | Padding |
+-+

Example Internet Datagram Header

IHL: 4 bits Internet Header Length is the length of the internet header in 32 bit
words, and thus points to the beginning of the data. Note that the
minimum value for a correct header is 5.

Type of Service 8 bits (like QOS) precedence, reliability, etc.
Total Length: 16 bits

Total Length is the length of the datagram, measured in octets,
including internet header and data, up to 65536. The number 576 is
selected to allow a reasonable sized data block to be transmitted in
addition to the required header information. For example, this size
allows a data block of 512 octets plus 64 header octets to fit in a
datagram.

Flags: 3 bits Various Control Flags:

Understanding Data Communication Protocols and Software Page 101

Bit 0: reserved, must be zero
Bit 1: (DF) 0 = May Fragment, 1 = Don’t Fragment.
Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.

Time to Live: 8 bits
This field indicates the maximum time the datagram is allowed to
remain in the internet system. If this field contains the value zero, then
the datagram must be destroyed. This field is modified in internet
header processing.

Protocol: 8 bits
Header Checksum: 16 bits

A checksum on the header only. Since some header fields change (e.g.,
time to live), this is recomputed and verified at each point that the
internet header is processed. The checksum field is the 16 bit one’s
complement of the one’s complement sum of all 16 bit words in the
header. For purposes of computing the checksum, the value of the
checksum field is zero.

Source Address: 32 bits
Destination Address: 32 bits
Options variable, various (security, source routing, timestamp)

NETWORK LAYER SUMMARY
The basic difference in network protocols is in the demands placed upon the transport
layer. Connection-oriented or virtual circuit protocols allow a simple transport layer (like
ISO TP1, which does practically nothing), whereas connectionless protocols demand an
error-correcting, resequencing transport layer (like ISO TP4).

There are three major costs incurred in network routing: the storage required in each
network node for routing tables and transmit queues; the computation required to calculate
paths; and the bandwidth consumed by routing update messages. The routing table size is
in linear proportion to the number of network nodes, and calculation and update
transmission overhead rises in proportion to the table size.

In fixed routing schemes, the routing calculation is trivial -- simply a table lookup -- and
there are no regular update messages. But fixed routing allows some links to become
congested while other potentially usable links go unused. Thus, frequent manual
intervention by the network managers is required to keep the network "in tune".

In dynamic routing arrangements, the routing calculation can be relatively complicated,
involving cost comparisons, loop control, etc., which depend on data that must be frequently
exchanged amongst the network nodes. The larger the network becomes, the more of its
resources are devoted to its own routing scheme; when the tables become too large, the
network becomes overloaded trying to "optimize network performance".

Virtual circuit networks strike a compromise between fixed and dynamic routing networks.
The best route for a particular connection is determined dynamically on the assumption
that conditions won’t change "too much" during the session, but if that assumption should
prove false, nothing can be done.

Any strategy will work well for a small, lightly loaded network. However, when networks
become large or heavily used, dynamic datagram routing can lead to congestion, and in
such cases virtual circuit routing might be a better choice, OR... the network can be

Page 102 OSI LAYER 3 - THE NETWORK LAYER

segmented into manageable subnetworks with dynamic routing, and an explicit internet
protocol can be put on top.

REFERENCES
Text: Network layer material on pp.8-9, 22-23, 52-68 (X.25), 91-104 (SNA, only for the
curious, and stronghearted), 156-160 (DECnet), 233-260 (X.25), 350-357 (ISO definition).

Schwartz, M., "Telecommunication Networks", Addison-Wesley (1987), ch.5-6.

Piscatello, D.M., et al., "Internetworking in an OSI Environment", Data Communications,
May 1986, pp.118-136.

Weissberger, A.J., et al., "What the New Internetworking Standards Provide", Data
Communications, February 1987, pp.141-156.

RFC791

Understanding Data Communication Protocols and Software Page 103

6. OSI LAYER 4 - THE TRANSPORT LAYER
The transport layer resides in the host computer, and provides end-to-end reliable data
transfer between the two systems where the communicating applications are running. It is
the highest layer that is directly concerned with the movement of data between machines,
and it is the lowest layer that always resides on the end-user systems.
+-------------+ +-------------+ +-------------+
| User | | User | | User | Application
| Application | | Application | | Application | Programs
+------+------+ +------+------+ +------+------+

| | |
| | |

+------+------------------+------------------+------+
| Session Layer (maybe) | Host Computer
+---+ Operating System
| T R A N S P O R T L A Y E R |
+-------------------------+-------------------------+

|
- -

|
+-------------------------+-------------------------+ Communication
| Network Layer | Subnetwork
+---+
| Datalink Layer |
+---+
| Physical Layer |
+---+

The transport layer depends upon the network layer to deliver its packets through the
network, and the network layer, in turn, depends on the datalink layer to perform each
point-to-point hop, and to detect and possibly also correct transmission errors.

Since more than one user of a computer may wish to use the network at the same time, the
transport layer may "multiplex" multiple user sessions onto a single network connection.
Conversely, it can also "split" a single session over multiple network connections in order to
improve performance.

users user
A B C D
\ | / |
\|/ |
| /|\
| / | \

Network Network

Multiplexing Splitting

The transport layer uses the underlying COMMUNICATION SUBNETWORK to deliver
the user’s data. It has some knowledge of the network’s characteristics, and matches them
with the quality of service requested by the user, while shielding the upper layers from any
concern with the network itself.

It is the transport layer’s responsibility to ensure that data gets from the source to the
destination system completely and correctly. To do this, it engages in transport-layer
protocol with its peer transport layer on the other system. This means that it takes the
service data units (SDUs) from the upper layers, forms them into network-sized chunks (by
segmenting or blocking), and adds on its own protocol information so that its peer transport
layer can do the required error checking and recovery.

Page 104 OSI LAYER 4 - THE TRANSPORT LAYER

+-----+------+
Upper Layer: | PCI | SSDU |
(e.g. Session) +-----+------+

|
V

+-----+------------+ End-to-end
TRANSPORT LAYER: | PCI | TSDU | <----> Transport protocol
(e.g. ISO TP, ARPA TCP) +-----+------------+

|
V

+-----+------------------+
Network Layer: | PCI | NSDU | (PCI = Routing info)
(e.g. X.25, IP) +-----+------------------+

|
V

+------+-------------------------+-----+------+
Datalink Layer: | FLAG | DSDU | FCS | FLAG |Point-to-point
(HDLC, etc) +------+-------------------------+-----+------+

|
V

Physical Layer: (transmits the frame)----------------->

(SDU = Service Data Unit)
(PDU = Protocol Data Unit)
(PCI = Protocol Control Information)

If the underlying network already delivers a reliable stream of data, as in
connection-oriented virtual circuit networks, then the transport layer has little work to do,
except opening and closing the connection, transferring data, and perhaps multiplexing.

But in a connectionless packet-switched or datagram network, packets can take different
routes. Packets can arrive at the end system out of order, some can be discarded by the
network (because of congestion), or duplicated (retransmission at the network level). The
network and lower layers have no way of knowing about this. Furthermore, a packet could
be damaged during delivery from the network front end to the host system. Only the end
system can detect and correct such errors, and this is the function of the transport layer.
Therefore the transport protocol must be prepared to:
(a) discard corrupted packets, - Error detection
(b) resequence misordered packets,)
(c) retransmit unacknowledged packets,) Sequencing
(d) discard duplicated packets,)
(e) engage in end-to-end flow control with its peer. - Flow Control

A transport layer that can do all this can deliver a reliable stream of packets to its upper
layers.

From all this, it should be evident that the piece of protocol information most important to
the transport layer is its packet SEQUENCE NUMBER. And when packets have sequence
numbers, this means the associated protocol is CONNECTION-ORIENTED, as most
transport protocols are.

But SEQUENCING poses special problems at the transport layer. Recall that in the most
unreliable type of underlying network, packets may rattle around for unpredictable
amounts of time and arrive out of order, not at all, or in multiple copies.

Understanding Data Communication Protocols and Software Page 105

Ambiguity of Packet Sequence Numbers

Sequence numbers are always of fixed length, and "wrap around" after the maximum value
is reached. For instance, 3-bit sequence numbers proceed from 0 to 7, and then start over
at 0 again. Care must be taken in selecting the actual range of sequence numbers at the
transport level.

Let’s assume we have a transport protocol with 3-bit sequence numbers and a window size
of 7, and that allows "bulk ACKs" (i.e. an ACK for packet n also ACKs all previous packets).
(This implies a go-back-to-n retransmission strategy.) Host A sends packets 0, 1, 2, and 3
to B, but packet 0 is delayed in the network. B receives 1, 2 and 3, but does not ACK
because it hasn’t seen 0 yet. A times out waiting for the ACK and retransmits 0. B then
ACKs packet 3 (and implicitly therefore also 0, 1, and 2). Then A sends 4, 5, 6, and 7, and B
ACKs these by ACKing 7. Then A wraps around and sends its next packet with sequence
number 0. However, the old, delayed packet 0 arrives at B at this point; B can’t tell the
difference, so the old packet 0 is accepted as the new one.

(packet 0 takes a long, roundabout trip through the network...)
/-----------+

A / |
0 ----/ |
1 -------> |
2 -------> |
3 -------> |

|
(A times out waiting |
for ACK...) |

|
0 -------> |
1 -------> |
2 -------> |
3 -------> |

|
<-------ACK(3) |

|
4 -------> |
5 -------> |
6 -------> |
7 -------> |

|
<-------ACK(7) |

/
/

Old packet 0 arrives just when B was expecting the new one.

0 -------> (new packet 0 arrives but is rejected as a duplicate)

So the application gets bad data, accepted as though it were good.

How can the problem of recycled sequence numbers be avoided? (Ask the class)

The most common method is to ensure that the sequence number space is large enough not
to wrap around in less than the maximum life expectency of a transport-level packet in the
network. Transport protocols tend to have a much larger range of sequence numbers than
lower levels use. For instance, typical datalink and network packets have 3-bit or 7-bit
sequence numbers, but transport protocols may use 16-bit or 32-bit sequence numbers.

Page 106 OSI LAYER 4 - THE TRANSPORT LAYER

Persistence of Transport Packets Across Connections

But the fact that one transport connection can be closed and another opened soon thereafter
poses another problem: how can the new transport connection identify and ignore duplicate
packets left over from the old one?

For instance, suppose the first connection is opened (packet 0), one data packet is sent
(packet 1), and then closed (packet 2). Howevever, since a confirmation for the data packet
was not received within the timeout interval, it was retransmitted, and then confirmed.
Now, a second connection is opened (packet 0). At this point, the duplicate data packet
(which was held up in the network) finally arrives, and because it has the right sequence
number (1), it is accepted, erroneously.

Several methods can be used to avoid the leftover-packet problem:

1. Don’t request a new connection until enough time has passed to ensure that
no old packets can be left floating around in the network. The drawback here
is the delay that is imposed.

2. Don’t reset sequence numbers between transport connections. Assuming the
sequence number range is big enough, this will work, provided the system
doesn’t crash and forget its previous transport sequence number.

3. Choose an initial sequence number that is guaranteed to be higher than any
leftovers, even if all memory of previous connections has been wiped out. This
can be done by basing the number on a time-of-day clock. This method can
fail if the system’s date and time have been set incorrectly. Some networks
may provide a network-wide "global" clock for this purpose (among others).

If sequence numbers are not to be recycled for each transport connection, they must be
negotiated during connection establishment. Each side must acknowledge the other side’s
proposed initial sequence number before data can be exchanged.

TRANSPORT LAYER EXAMPLES
There are two major "public" transport protocols: ARPANET TCP and ISO TP, plus the
equivalent layers in proprietary networks like SNA and DNA, which we won’t discuss. ISO
TP also has a US variant promulgated by the NBS and FIPS. But first let’s look at a
simple asynchronous point-to-point protocol.

THE KERMIT TRANSPORT LAYER

Kermit’s upper layers call upon the transport layer to provide an ordered, and complete
sequence of data. The transport layer, in turn, uses the services of the datalink layer to
assure that packets are delivered without error. In the Kermit protocol, there is no
network layer between the transport and datalink layers, because the PHYSICAL
connection is always strictly point-to-point.

Kermit’s TRANSPORT LAYER has two major functions: sequencing and error recovery.
Kermit’s DATALINK layer finds the beginning and end of an incoming packet based on the
MARK field, finds the end (and the block check) based on the LEN field, and then checks
the block check.

Understanding Data Communication Protocols and Software Page 107

+------+--------+-----+------+----------------+-------+
| MARK | LENGTH | SEQ | TYPE | DATA | CHECK |
+------+--------+-----+------+----------------+-------+

If a packet arrives in damaged condition, the datalink layer reports a special code "Q" to the
transport layer. If a packet does not arrive within the timeout interval, a code of "T" is
reported. If it arrives undamaged, then its actual type is reported. Thus Kermit’s datalink
layer provides error detection and notification, but not error recovery.

Kermit sequence numbers range from 0 to 63, and then recycle (this range is the highest
power of two representable in a single printable ASCII character). A Kermit session always
begins with packet number 0. The transport layer examines the sequence number and
packet type returned by the datalink layer. If a T or Q code was returned, then the
transport layer simply retransmits its most recent packet. Otherwise, the transport layer
examines the sequence number of the new packet. If it is the expected sequence number,
the packet is accepted, the packet number incremented (modulo 64), and the next one is
transmitted. Otherwise, the most recent packet is retransmitted. Retransmission occurs
up to a maximum retry threshold; if the desired packet cannot be obtained within the retry
limit, the transport layer signals failure.

Here is a simple programming example, not in any real language...
call datalink(read,type,seq,inbuf) Read a packet.
for try = 1 to retry-limit { Try this many times.
if seq = n and type != ’Q’ If expected seq # & not damaged,

then return(type) return its type.
call datalink(write,outbuf) Otherwise retransmit last packet.
call datalink(read,type,seq,inbuf) And try again to read.

}
return(’T’) Failed, say we timed out.

While Kermit’s default transport protocol is stop-and-wait, there is also optional sliding
window operation with selective retransmission (not widely implemented). When the
window size is greater than one, Kermit must maintain two arrays (windows), one for
arriving packets, one for transmitted ones. Each array contains the packets themselves,
and the outbound array also stores timing and retry information for each packet.

When a packet arrives, Kermit must check whether the sequence number falls within the
current window, and it must generate NAKs for the "most desired packet" (the one most
likely to block advancement of the window).

Packet Retries ACK’d?
------ ------- ------
7 1 n <-- most desired packet
8 2 y
9 1 y
10 1 y
11 3 n
12 1 y
13 1 y

Because Kermit is a simple, point-to-point protocol with no underlying network routing
considerations, there are no complications about leftover network packets or packet-number
ambiguities.

Kermit’s method of closing the transport connection, however, provides an interesting
lesson: A disconnect request ("B") is sent and ACK’d:

Page 108 OSI LAYER 4 - THE TRANSPORT LAYER

X Y

DR------>
<------ACK

What if the ACK is lost? X retransmits the DR, but Y has already shut down and isn’t
listening any more.
THE ARPANET TRANSPORT LAYER

ARPANET Transmission Control Protocol (TCP), defined in RFC793 (1981), provides a
reliable host-to-host data delivery protocol for packet-switched networks. It is the standard
currently in use by the Dept of Defense, and was developed under DoD sponsored research.
It is also widespread on university campuses and in commercial LANs. It is older than ISO
TP, and influenced its design. TCP will gradually be replaced by ISO TP.

TCP is designed to run over networks that can lose, damage, misorder, or misdeliver
packets, and therefore assumes all responsibility for error detection and recovery and for
sequencing. (Recall that IP is a connectionless non-error-checking datagram protocol.) It is
considerably more complicated than Kermit’s simple transport mechanism.

+--------------------+
| Application |
| (TELNET, FTP, etc) | Upper layers
+---------+----------+

|
| Application Program

- -
| Operating System
|

+---------+----------+
| TCP | Transport layer
+---------+----------+

|
+---------+----------+
| IP | Network upper sublayer (Internet Protocol)
+---------+----------+

|
Host |
- -
IMPs |

|
+---------+----------+
| Subnetwork | Network lower sublayer (routing),
+--------------------+ datalink & physical layers.

Thus, TCP has fewer layers than the OSI model. Application programs generally call upon
TCP directly.

TCP converts between network packets and application data. An application feeds TCP a
stream of data bytes, and TCP breaks the stream up into packets of a size appropriate to
the network, and decodes incoming packets into an identical data stream, transparently to
the application.

A TCP header looks like this. Note that there’s no length field. That’s because the length
is specified in the enclosing IP packet, and IP tells TCP what the length is.

Understanding Data Communication Protocols and Software Page 109

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Sequence Number |
+-+
| Acknowledgment Number |
+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
Data								
+-+

There is also a connectionless equivalent, called UDP - User Datagram Protocol, which has
headers like this:

0 7 8 15 16 23 24 31
+--------+--------+--------+--------+
| Source | Destination |
| Port | Port |
+--------+--------+--------+--------+
| | |
| Length | Checksum |
+--------+--------+--------+--------+
|
| data octets ...
+----------------

As you can see, UDP provides no sequencing information, and no acknowledgements.
Network software that uses UDP must therefore handle the reliability issues normally
handled at the transport layer.

UDP is used with Inquiry Response Protocol (IRP) and Name Server Protocol (NSP).

Now let’s look in some detail at what TCP must do in order to provide reliable end-to-end
data delivery between pairs of processes on top of a less reliable internet communication
system.

(1) Multiplexing -- connecting pairs of processes:

To allow for many processes within a single host to use TCP communication facilities
simultaneously, TCP provides a set of addresses or ports within each host. Concatenated
with the network and host addresses from the internet communication layer, this forms a
"socket". A pair of sockets uniquely identifies each connection: Process A on host X is
connected to process D on host Y.

Page 110 OSI LAYER 4 - THE TRANSPORT LAYER

Host X
user A

\ Host Y
user B ----(X.A)---(X.C)---(X.B)----> user D

/ /
user C <---(Y.E)---(Y.F)---(Y.D)---- user E

\
user F

Some sockets are reserved for special applications, like Telnet or FTP servers, which are
always "listening" for a connection.

(2) TCP Connection Establishment:

Because it must provide a reliable stream of data, and perform end-to-end flow control, TCP
is a CONNECTION-ORIENTED protocol. This means that TCPs must initialize and
maintain certain status information. The combination of this information, including:

• sockets

• sequence numbers

• window sizes

is called a CONNECTION. The maximum "segment size" is specified during initial
connection, as is the initial sequence number (TCP packets are called segments).

A TCP connection can be used over and over again. New instances of a connection are
referred to as incarnations of the connection. How does TCP identify and reject duplicate
segments from previous incarnations of the connection?

For each connection there is a send sequence number and a receive sequence number. The
initial send sequence number is chosen by the data-sending TCP based on a 32-bit clock
that cycles every 4.6 hours (longer than any packet can "live" in the network), and the
initial receive sequence number is learned during the connection establishing procedure.
Thus, sequence numbers don’t "start over at zero" with a new connection.

But if a packet won’t be accepted if it doesn’t have the right sequence number, and the
sequence number is not known in advance, then how can a connection be established in the
first place?

The two TCPs must tell each other their initial sequence numbers. This is done by setting
a bit called "SYN" (for synchronize), which tells the receiver that the segment’s sequence
number should be accepted as the first one in the connection. The process requires each
side to send its own initial sequence number and to receive a confirmation of it in an
acknowledgment from the other side. Each side must also receive the other side’s initial
sequence number and send a confirming acknowledgment:
1) A --> B SYN my sequence number is X
2) A <-- B ACK your sequence number is X
3) A <-- B SYN my sequence number is Y
4) A --> B ACK your sequence number is Y

Because steps 2 and 3 can be combined in a single message this is called a "three-way
handshake". ("Hello, my name is X." "Hello X, my name is Y." "Hello Y.")

(3) TCP Basic Data Transfer:

Understanding Data Communication Protocols and Software Page 111

TCP is able to transfer a continuous stream of OCTETS (8-bit bytes) in each direction
between its users by packaging some number of octets into segments (packets) for
transmission through the internet system (network).

In general, the TCPs decide when to block and forward data at their own convenience.
Applications, however, can request an explicit "push" of data out of the host and into the
network. For instance, a batch-mode application like file transfer might allow TCP to block
large amounts of data, whereas a highly interactive application like full-duplex (remote
echo) virtual terminal service might request that each character be "pushed", so that its
echo will return in a reasonable amount of time. A half-duplex local-echo terminal
connection might "push" whenever the user types a carriage return.

In order to detect when data is lost, duplicated, or delivered out of order, TCP assigns a
32-bit SEQUENCE NUMBER to EACH OCTET (yes, octet) transmitted, and requires a
positive acknowledgment (ACK) from the receiving TCP (the sequence number of the
packet is the sequence number of its first byte). The acknowledgment mechanism
employed is cumulative so that an acknowledgment of sequence number X indicates that all
octets up to but not including X have been received, which means that "go-back-to-n"
retransmission is used.

There are no explicit "negative acknowledgements". Rather, when the TCP transmits a
segment containing data, it puts a copy on a retransmission queue and starts a timer; when
the acknowledgment for that data is received, the segment is deleted from the queue. If the
acknowledgment is not received before the timer runs out, the segment is retransmitted.

DAMAGE -- which can occur when the packet is transferred between the network front end
and the host -- is handled by adding a 16-bit 1’s-complement CHECKSUM to each segment
transmitted, checking it at the receiver, and discarding damaged segments, and letting
timeouts handle the retransmission.

(4) Flow Control and Sequencing

TCP provides a means for the receiver to govern the amount of data sent by the sender.
This is achieved by returning a "window" with every ACK indicating a range of acceptable
sequence numbers beyond the last segment successfully received. The window indicates an
allowed number of octets that the sender may transmit before receiving further permission.
This flow control mechanism explains the use of octet numbers rather than packet sequence
numbers. This is an example of the "explicit buffer credit" flow control mechanism, which
differs from windows by being able to vary dynamically.

(refer to TCP header picture -- "window" field tells the maximum size the next packet can
be)

Buffer credits can lead to problems, however. In some TCP implementations, hosts will
grant credit for very small numbers of bytes (like 2). Clearly, there should be some sensible
minimum credit, like 100 or 1000, otherwise the connection will be swamped because of the
high per-packet overhead (ratio of control fields to data, ACKs, etc).

TCP SOFTWARE CONSIDERATIONS:

On a multiuser timesharing system, the multiplexing function means that the transport
entity has access to different users’ data. For this reason, the transport function must
occur in a secure place, such as in the operating system kernel. If it were done in a user
programs, e.g. by linking in a library, then malicious users could easily spy on or

Page 112 OSI LAYER 4 - THE TRANSPORT LAYER

masquerade as other users.

Putting TCP in the OS has another advantage too, namely that it can appear to
programmers as part of the OS’s normal file service. TCP connections can be opened,
closed, read from, and written to, just like disk files, communication lines, or other serial
devices.

THE OSI TRANSPORT LAYER
The OSI Transport Layer, defined in ISO DP 8072 and 8073 (1984), and the equivalent
CCITT X.214 and X.224, has a flexible design to accommodate the variety of network and
datalink layers that can lie underneath it. Thus it is even more complicated than TCP.

For instance, TCP always assumes that the underlying network service (IP) is unreliable.
But ISO allows for several grades underlying network service:

Type A: Good service. Totally reliable network service, a connection-oriented virtual-circuit
network that does not reset (any examples? Teletex?).

Type B: Fair service. Network layer reports but does not recover from failure ("acceptable
error rate but unacceptable rate of signalled failures"). This means that if a packet is
delivered, it’s good, otherwise you’ll be notified of errors.

Type C: Poor service. Like IP -- misordered, missing, misdelivered, or damaged messages
may be delivered, with no error notification.

To allow reliable end-to-end communication over a variety of network services, 5 classes of
OSI transport service are defined, TP-0 through TP-4.
Class Name For use with:
0 Simple Type A Networks (Teletex)
1 Basic Error Recovery Type B Networks (X.25)
2 Multiplexing, no Error Recovery Type A Networks
3 Multiplexing and Error Recovery Type B Networks
4 Multiplexing, Error Detection & Recovery Type C Networks (datagram)

All five classes do connection establishment, release, and data transfer, segmenting, and
error reporting. Class 0 does nothing else. Here are SOME of the other functions of each
class:
Function: Class: 0 1 2 3 4

Error Release Y N Y N N
Blocking N Y Y Y Y
Expidited data transfer N Y Y Y Y
Data TPDU sequencing N Y Y Y Y
Explicit flow control N N Y Y Y
Multiplexing N N Y Y Y
Resynchronization (after reset) N Y N Y Y
Error Recovery N Y N Y Y
Error Detection (Checksums) N N N N Y
Retransmission on Timeout N N N N Y
Resequencing N N N N Y
Splitting N N N N Y

Notice that no class is strictly a superset of any other class.

You might think that since X.25 is a connection-oriented network, you could use TP-0 on
top of it. TP-1 is required because because it does sequencing, which is necessary when the

Understanding Data Communication Protocols and Software Page 113

X.25 network connection is reset (sequence numbers go back to 0).

How does all this relate to users? Do users get to pick which transport class they want?
Does one cost less than another? Probably the user has no real say in the matter. The
transport layer automatically adapts itself to the underlying network, of which it has
knowledge, and from knowledge of which it shields the upper layers, and the user.

. ISO TP Connection Establishment and Release

The ISO standards provide connection-oriented service only: transport connections must be
explicitly established and released. However, there are addenda (ISO 8072/DADI and
8602) that describe a connectionless transport protocol; in this case, the issues of sequence
assurrance, etc, are pushed up to the next higher layer. ***

Transport "primitives" (commands) are Request, Indication, Response, and Confirm. The
transport layer "requests" a particular service by sending a message to its peer layer on the
other system, which gets an "indication" and then "responds" to it. This response arrives at
the requestor as a "confirmation". (This same discussion applies to all layers except the
lowest.) For instance, to establish a connection, a connect-request is transmitted, which is
received as a connect-indication, then out goes a connect-response, which is received as a
connect-confirmation.

A connect-request (CR) specifies parameters like:

• Protocol class (TP-4, 3, ..., 0)

• TPDU maximum size

• Normal or extended TPDU format (7-bit or 32-bit sequence numbers)

• Checksum selection

• Quality of service parameters, including throughput, transit delay, priority,
and reliability (residual error rate)

• Explicit flow control

• Support for expedited TPDUs

The QOS parameters are then passed down to the network layer.

The initial sequence number is chosen to avoid packets from old connections arriving
during a new connection, as in the TCP case. In TP-4 the sequence number plus the
incarnation number uniquely identifies a TPDU.

. ISO TP Data Transfer:

Data may be transmitted in normal (DT) or expedited (ED) data units. Sequence numbers
are 7 or 31 bits, depending on what was negotiated. They refer to WHOLE TPDUs, not
octets within the TPDU. Here’s a normal 7-bit sequence number TPDU. The 31-bit
sequence-number version has the checksum (if any) starting in 3 bytes later, followed by
the data.

1 2 3 5 6 8
+--------+----+-----------+----------+----------+-----------
| LENGTH | DT | T-ADDRESS | SEQUENCE | CHECKSUM | DATA ...
+--------+----+-----------+----------+----------+-----------

Page 114 OSI LAYER 4 - THE TRANSPORT LAYER

When the transport layer segments its service data units, it indicates the final TPDU in the
sequence by setting the "spare" bit in the sequence number (try saying this in English!).

DTs are explicitly ACK’d by the reciever. The ACK carries the sequence number of the
NEXT expected TPDU. Multiple TPDUs can be ACK’d cumulatively, which implies
go-back-to-n retransmission in case of errors.

The ACK also contains a credit field for window management. The credit field tells how
many TPDUs it is ready to receive. Credit + NEXT tells the packet number of the first
packet that cannot be transmitted in the current window.

(SHOW THIS... SEE NEXT PAGE)

The NEXT number specifies the sender’s lower window edge, and NEXT + CREDIT the
upper. Initial credits are exchanged at CR and CC time.

1 2 3 5 6
+--------+-----------+-----------+--------+----------------
| LENGTH | AK CREDIT | T-ADDRESS | NEXT # | parameters...
+--------+-----------+-----------+--------+----------------

Why must flow control occur at the transport level if it is already done by the lower levels?
Because... this is END-TO-END flow control. The receiving transport entity might well be
in a different computer from the network entity, and this computer might be slower, or
have smaller buffers. The transport layer must be able to prevent its buffers from filling
up.

The TP-4 error detection method is a "Fletcher Checksum", a 16-bit arithmetic checksum
applied to the entire TPDU, used if negotiated at connection establishment time. (Why not
a CRC? Because TP-4 is more likely to be running on a host, and a checksum is easier to
program in software.) Here is the Fletcher checksum algorithm, coded in BASIC. Assume
that M$ is the message to be checksummed, including two (initially zero) bytes of
checksum, and that L is its length, and N is the position of the first checksum byte (this
might be 1, or L - 1).
100 M$ = "This is a test message" + CHR$(0) + CHR$(0)
110 L = LEN(M$) ’ Length of message, including checksym bytes
120 N = L - 1 ’ Position of checksum in message

1000 C0 = 0
1010 C1 = 0
1020 FOR I = 1 TO L
1030 C0 = (C0 + ASC(MID$(M$,I,1))) AND 255
1040 C1 = (C1 + C0) AND 255
1050 NEXT I
1060 X = (-C1 + (L - N) * C0) AND 255
1070 Y = (C1 - (L - N + 1) * C0) AND 255
1080 MID$(M$,N,1) = CHR$(X)
1090 MID$(M$,N+1,1) = CHR$(Y)

The result is that the modulo-256 sum of all the data bytes including the two checksum
bytes should be zero. Thus, to check a received checksum, do:

Understanding Data Communication Protocols and Software Page 115

1100 C0 = 0
1110 C1 = 0
1120 FOR I = 1 TO L
1130 C0 = (C0 + ASC(MID$(M$,I,1))) AND 255
1140 C1 = (C1 + C0) AND 255
1150 NEXT I
1160 IF C0 = 0 AND C1 = 0 THEN PRINT "IS OK" ELSE PRINT "IS NO GOOD"

This method (the only one defined for OSI Transport error detection) is efficient, but will
not detect insertion or loss of leading or trailing 0 bytes, nor misordering of certain octets.

If corruption is detected, the packet will be discarded. If it does not arrive within the
specified interval, a TIMEOUT and retransmission will occur. TP-4 has many timers; one
for unack’d CRs, another for unack’d DT’s, another for unACK’d ED’s, etc. -- 12 of them in
all. Setting of timers at their best levels (so they don’t go off prematurely, but still catch
missing packets promptly) is a tough job.

COMPARISON
Kermit vs TCP vs TP4

Connection establishment:

Kermit: Connection always starts with packet 0. Since connection is a single circuit,
packets don’t take alternate paths, can’t pass each other, so no leftover packet problem.

TCP: 3-way handshake on initial packet numbers, based on TOD clock. Active (client) and
passive (server) transport entities.

TP4: 3-way handshake on initial packet number.

Data transfer:

Kermit: Performs error recovery but not detection (which is done by datalink layer, which
informs transport layer), sequencing and resequencing. Packets are numbered 0-63. Flow
control by stop-&-wait or sliding window with selective retransmission.

TCP: Performs error detection AND recovery, sequencing and resequencing. Each byte has
a sequence number, 0 - 2^31-1. Flow control by credit allocation (per byte). Go-back-to-n
retransmission.

TP4: Like TCP, but packets are numbered (7-bit or 32-bit sequence numbers), rather than
bytes. Flow control by credit allocation (per packet). Go-back-to-n retransmission.

Connection release:

Kermit: 2-way handshake.

TCP & TP4: 3-way handshake.

Page 116 OSI LAYER 4 - THE TRANSPORT LAYER

SUBSTITUTIONS
A highly touted benefit of layering is that equivalent layers can be substituted for one
another. Substitutions often occur at or near the transport layer.

Is it possible to run TCP over, say, X.25? Not directly (TCP and IP are too closely
intertwined). But TCP/IP can indeed run over X.25. In one scenario, an X.25 subnetwork
can be used unmodified. In this case, the host TCP/IP must be modified to know how to
place the X.25 call, and close it when finished. In the other scenario, the subnetwork can be
modifed to interface to X.25 as well as to its own network; this allows more efficient
operation, and is transparent to the host software.

A common substitution is IBM’s IEEE 802.5 Token Ring interface for the lower layers
usually used by TCP/IP (such as Ethernet, Host-IMP protocol). TCP packets are embedded
in IP packets. The IP layer calls directly upon the LLC sublayer of the Token Ring datalink
code.

IBM PC Kermit (in its most recent release) is able to call upon NetBIOS to send its packets
to other PCs on a PC network. In this case NetBIOS, a session-level protocol, fills in for
Kermit’s physical layer, so that the datalink and transport functions are duplicated by the
two protocols.

Conversely, IBM PC-DOS software that uses NetBIOS session-level calls can sit on top of
TCP/IP, perhaps running on Ethernet. This could allow PC networks, print servers, shared
dBASE’s, etc, to coexist on a wide area Internet.

TRANSPORT LAYER SUMMARY
The transport layer must ensure reliable, correct, and complete delivery of data from one
end system to another, regardless of the characteristics of the underlying network.
UNLESS... a higher layer elects to do this, on top of a "connectionless" transport service
like UDP or TP0.

If more than one user of an end system can have a transport connection at one time, the
transport layer must provide a SECURE MULTIPLEXING function so that multiple users
can have access to the same network connection, and data is delivered to its intended users.
Multiplexing introduces its own set of problems, however: how can the transport layer
distinguish between highly interactive sessions (like virtual terminal connections) and
batch-oriented ones (like bulk file transfer)?

The transport layer must provide END-TO-END FLOW CONTROL. This is normally done
using a sliding window mechanism, controlled either by acknowledgements or by explicit
granting of buffer credits.

If the underlying network is connection-oriented and totally reliable, then the transport
layer need do little beyond multiplexing and flow control. Otherwise, it must also perform
sequence and error control, and even address verification.

SEQUENCE CONTROL is accomplished via the transport packet sequence numbers. Some
transport protocols assign sequential numbers to each packet (0, 1, 2, etc), others to each
byte within the packet (ARPANET TCP). The sequence number allows duplicate packets
within a connection to be discarded, missing ones to be detected (and retransmission
requested), and out-of-order packets to be correctly sorted. Special problems occur when
duplicate packets from an old connection arrive at a new connection.

Understanding Data Communication Protocols and Software Page 117

If the underlying network service does not provide error-checked packets, then ERROR
CONTROL is accomplished at the transport level using a checksum. Corrupted packets are
normally discarded. The sender eventually times out awaiting an acknowledgment and
retransmits.

REFERENCES
Textbook, Transport Layer material on pp.23-24, 69-80 (skim), 160-165 (DECnet), 105-112
(SNA), 345-349 (ISO Definition).

Kermit book, pp.214-220.

Schwartz, M., "Telecommunication Networks", Addison-Wesley (1987), ch.7.

Stallings, W., "A Primer: Understanding Transport Protocols", Data Communications, Nov
1984, pp.201-215.

Postel, J., Editor, "Transmission Control Protocol", RFC793 (1981).

Postel, J., Editor, "User Datagram Protocol", RFC768 (1980).

CCITT Recommendation X.214, "Transport Service Definition for OSI for CCITT Applica-
tions" (1984).

CCITT Recommendation X.224, "Transport Protocol Specification for OSI for CCITT
Applications" (1984).

Page 118 OSI LAYER 4 - THE TRANSPORT LAYER

Understanding Data Communication Protocols and Software Page 119

7. THE SESSION LAYER
If the transport layer (at least when it’s connection-oriented, as most are) provides reliable
streams of data between end systems, then what do we need additional higher layers for?
Why doesn’t the application program itself simply read and write data directly to and from
the transport layer?

(example of two programs, open, read/write, close...)

Well, in the ARPANET that’s exactly what happens. TCP is implemented within the file
system of the host computer, and application programs open, read from, write to, and close
transport connections exactly as they would files. This imparts simplicity to the network
design, but unloads many tasks onto the application programmer -- tasks like synchroniza-
tion of dialog, character set conversion, data format conversion, etc -- that might more
properly and consistently be done elsewhere, and requires that each application program
duplicate these functions (hopefully, in a compatible way!)

For this reason, TCP/IP networks do not abound in applications, generally providing only
three major ones: virtual terminal service (TELNET), file transfer (FTP), and electronic
mail (SMTP). Each of these applications is large and complex.

The OSI approach says that it makes more sense to put these common tasks in a common
place. Rather than require these functions to be coded into each application program, they
are collected into the network software, implemented in the operating system or in program
libraries to be linked with the application program.

These high-level functions fall into three categories: session control (dialog management),
presentation services (data syntax conversion), and application services (the actual
processing of the data).

OSI LAYER 5 - THE SESSION LAYER
There are several competing session-layer standards, including ones from CCITT (X.215,
same as ISO 8326), and ECMA, each with different concerns (e.g. ECMA is vendor-oriented,
whereas CCITT is carrier-oriented), not to mention the equivalent functions in proprietary
architectures like SNA and DNA. The Arpanet protocols do not bother with a session layer
at all.

The ISO has tried reconcile the various viewpoints, but the result may be so complex that
nobody will accept it, especially in view of the fact that many applications have been
written directly over the transport layer. The following discussion applies to the CCITT
version.

The session layer resides in the host computer, and provides structured, reliable
communication between two cooperating processes on the end systems. It is the lowest
layer that is unconcerned with the movement of data between machines. It interacts with
its peer session layer as if there were no network between them at all, in fact as if they
were two processes on the same machine. The session layer depends upon the transport
layer to deliver information to its peer layer on the destination end system. There is a
one-to-one correspondence between transport connections and session connections; the
session layer does not multiplex.

This means it is the responsibility of the transport layer to deliver incoming data to the
correct session. Since the transport layer can "see" all of the sessions, it is necessarily

Page 120 THE SESSION LAYER

"privileged" and therefore must be protected from direct access by users. For this reason
(and others) it usually resides in the operating system.

Since the session layer sees only its own user’s data, it may reside in application program,
though it may also be part of the operating system, or linked with the user program from a
runtime library.

+-------------+ +-------------+ +-------------+
| User | | User | | User | Application
| Application | | Application | | Application | Programs
+------+------+ +------+------+ +------+------+

| | |
+------+------+ +------+------+ +------+------+
| Session | | Session | | Session |
| Layer | | Layer | | Layer |
+------+------+ +------+------+ +------+------+

| | |
+------+------------------+------------------+------+ Operating System
| Transport Layer |
+-------------------------+-------------------------+ Host Computer

|
- -

|
+-------------------------+-------------------------+ Communication
| Network Layer | Subnetwork
+---+
| Datalink Layer |
+---+
| Physical Layer |
+---+

But what does the session layer do? There are some aspects of interaction between two
processes that are common to all connections, and which the session layer can take
responsibility for. These include dialog management and checkpointing.

. Dialog Management:

The transport layer sends and receives data in a full duplex manner, without any regard for
the structure or content of the data. But applications are not concerned with arbitrarily
chopped-up pieces of messages arriving at unpredictable times; they expect whole
commands, or whole responses. Furthermore, many computer applications that follow the
command-response pattern of interaction are not prepared to accept new commands until
they have finished "outputting" their response to the last one.

The session layer allows the applications to specify whether the dialog is one-way (OW,
simplex), two-way-alternate (TWA, half-duplex), or two-way-simultaneous (TWS,
full-duplex), and then enforces the selected style of dialog. In the TWS case, each side
sends whenever it likes, and relies on the partner’s buffering capability. This is analogous
to typeahead on a full-duplex terminal connection.

The TWA case is more complicated. It is an attempt to impose a half-duplex style of
interaction on an intrinsically full-duplex medium, mainly to allow for the IBM style of
dialog. There are those who say "why bother?" -- if side A sends data before side B has
asked for it, then let side B’s transport layer hold it in a buffer temporarily.

Since only one side can transmit at a time, there must be a mechanism for granting
permission to send. This is called the "token". When a session connection is established in
which TWA dialog has been negotiated, one side gets to be "first". That side transmits and

Understanding Data Communication Protocols and Software Page 121

then, when done, sends the token to the other. This is analogous to a half-duplex terminal
connection at the physical level, in which each side gives the other permission to transmit
using a "line-turnaround handshake" character (like CR or Ctrl-Q).

In a TWA session there must also be a way to send data out of turn, for instance to
interrupt an application that is producing unwanted data (maybe because it was given the
wrong command). The session layer provides this mechanism as "typed data" (data sent
without permission). An example might be the BREAK signal sent by a half-duplex
terminal -- "please give me the token".

Another facet of dialog management is called "quarantine". This is useful in applications
where a batch of commands must be delivered all at once, or not at all. For example, when
updating a remote database to transfer money from one account to another, you would
want the debit and credit commands to be executed together so as not to leave a "window of
vulnerability" during which the money was in two accounts at the same time. Quarantine
service allows commands to be bracketed, and then delivered all at once to the application,
or not at all. It may be buffered locally by the sending session, or remotely by the receiving
one. It is not delivered to the application until the closing quarantine bracket ("release") is
encountered.

. Checkpointing:

The session layer provides mechanisms for marking the beginning and end of an "activity",
and for dialog units within an activity, and even for records within a dialog unit. There are
"synchronization" commands that can be used to isolate these pieces of data from one
another. In the event of failure or termination of a session, the activity can be resumed at a
previously marked synchronization point using the resynchronization service.

The ISO Session Layer defines major and minor sync points. Major sync points separate
"dialog units", in which all data is separated from all data in other dialog units. After
defining a major sync point, a user may not transmit additional data until the sync is
acknowledged. Once a dialog unit is acknowledged, all recovery information for it can be
purged. For instance, if multiple files are being transmitted, each file can be a separate
dialog unit. Recovery is only possible back to the last major sync point.

Minor sync points are similar, but need not be ack’d before further transmissions occur
(acks to these must be explicitly requested). If synchronization is lost, it should be possible
to back up to ANY minor sync in the dialog. The more minor sync points, the more efficient
backup and recovery (at the expense of transmitting and saving frequent checkpoints).
Sync points are marked with serial numbers. The session layer does not save the data
itself; this is the responsibility of the USER of the session layer, which must transmit it
again.

An "activity" is a logical unit of work, consisting of one or more dialog units, that can be
interrupted and later resumed, e.g. if one of the systems goes down. The session layer
automatically stores the serial number of the last sync point, so that the session user can
resume from that point.

A session may consist of one or more activities in sequence, or one activity can span several
sessions (as when it is interrupted and later resumed in a new session).

The checkpointing functions each have associated tokens: Set Major/Minor Sync Point,
Start/Resume/Interrupt/Discard/End Activity. The use of these tokens is negotiated at the
beginning of the session connection, and the tokens are exchanged using the "give token"

Page 122 THE SESSION LAYER

and "please token" functions. The use of tokens is optional, and if their use has not been
negotiated, then checkpointing cannot be done.

. Other Functions of the Session Layer:

Transport connection mapping. One-to-one, but... Several sessions can occur in sequence
over a single transport connection, and one session can span multiple transport connec-
tions. The latter capability provides the ultimate in shielding the user from network
failures -- if the network crashes and then comes up again, the application may continue to
run as if nothing happened. But this could open a "window of vulnerability" in which an
intruder can gain access to someone else’s open session.

The ability to support several simultaneous sessions over a single transport connection is
not yet defined in OSI. This could relieve the transport layer of the multiplexing function,
but would introduce additional complications into the session layer, like flow control. And a
multiplexing session layer would have to run in a secure environment, like in the OS, thus
it would add size and complexity to the OS.

Quality of Service (QOS) -- Like all the other layers, the Session Layer may request a given
quality of service from its inferior layer (Transport). The parameters may be either
prearranged or negotiated, and include:

Performance:

• Session connection (SC) establishment delay

• SC establishment failure probability

• Throughput (overall rate)

• Transit delay (round trip message delay)

• Residual error rate (lost, damaged, or duplicated session data units)

• Transfer failure probability (percent of time Transport can fail)

• SC release delay

• SC release failure probability

• SC resilience (probability that Transport will "abort" the connection)

(All of the above are really QOS parameters of the Transport service. A desired as well as
minimum acceptable value is specified for error rate, throughput, and transit delay.)

Protection:

• None

• Protect against passive monitoring

• Protect against modification, deletion, replay, insertion of data

• Both kinds of protection

SC priority (must use at least the requested priority):

Understanding Data Communication Protocols and Software Page 123

• The order in which SCs have their QOS downgraded, if necessary

• The order in which SCs are broken to recover resources, if necessary

Extended control:

• Let user use resync, "abort", activity interrupt/discard services when normal
flow is congested (desired or not desired)

Optimized dialog transfer:

• Concatenation of multiple session service requests into a single unit (desired or
not desired).

The session entity requesting the connection will specify any QOS parameters that are not
prearranged. The other session can refuse the connection, or accept it, possibly
downgrading the QOS based on its own capabilities.

Since many features are defined for the session layer, it is not expected that any particular
session layer will have them all. A full-blown implementation is not only complex but
unnecessary for virtually all applications. So, four subsets have been defined, similar to the
transport subsets T0-T4.

• The Session Kernel includes connection establishment, release and manage-
ment, as well as data transfer, in other words transparent use of Transport
connections with none of the special features of the Session Layer.

• The Basic Combined Subset (BCS) also includes options for expedited data,
token exchange, and typed data, and is intended for use in TWA (half duplex)
session connections, e.g. terminal-to-host connections.

• The Basic Synchronized Subset (BSS) adds to this the checkpointing features
and negotiated release, for use in reliable file transfer and transaction
processing.

• The Basic Activity Subset (BAS) is a specialized session protocol, which adds
activity management, in which multiple activities can be operated, suspended,
and resumed over a single transport connection, but lacks full duplex operation,
minor synchronization, resynchronization, and negotiated release. Used in
CCITT applications to message text from control information, similar to CCITT
T.62 (Teletex and Group 4 Facsimile).

SERVICE KERNEL BCS BSS BAS

Session Connection X X X X
Normal Data Transfer X X X * (1/2 duplex)
Expedited Data Transfer - - - -
Typed Data Transfer - - X X
Capability Data Transfer - - - X
Give Token - X X X
Please Token - X X X
Give Control (All Tokens) - - - X
Minor Sync Point - - X X
Major Sync Point - - X -
Resynchronize - - X -
Exception Reporting - - - X
Activity Management - - - X
Orderly Release X X * X (optional)
"Abort" X X X X

Page 124 THE SESSION LAYER

Different applications may require different session layer subsets. For instance MAP
requires BCS, whereas FTAM needs BSS, and X.400 must have BAS. If all these
applications are to run on the same system, there should be a common session layer that
supports all the required functions. Unfortunately, no one subset is a superset of the
others.

. Session Protocol:

Like the other layers, session protocol proceeds through connection establishment, data
transfer, and connection release phases, and it may do segmenting and blocking where
permitted. But unlike all the other layers we’ve looked at so far, it does NOT do
sequencing, flow control, or error checking (why not?).

An interesting sidelight... Data SPDUs may be of any negotiated length, but connect
requests, etc, are limited to 512 bytes. This makes it tough for the application layer to
piggyback an application connect request inside a Session connect request. A new version
(2) of the Session layer standard (Feb 88?) will allow unlimited length data in all SPDUs.
But how will an application that’s designed to work with V2 know that it’s connecting to a
V1 session layer on the other end???

A session packet (SPDU) consists of unit identifier (packet type), some parameters, and
user data (the SDU of the upper layer). The parameters are encoded using "PLV"
(parameter-length-value) notation: a code specifying which parameter (precedence, security
level, address, etc), the length of the parameter, and a parameter value of the given length.
This means that only those parameters that will actually be used are transmitted.
+------+-----+-----+-----+-----+-----------+
| TYPE | LEN | PLV | PLV | ... | USER DATA |
+------+-----+-----+-----+-----+-----------+

(Does this remind you of the encoding of a Kermit Generic Command packet?)

Parameters may be grouped, so that a single parameter field can include many related
parameters, which can be easily skipped over.

Parameters thus encoded include session addresses, the QOS parameters, type of service
(e.g. Teletex), etc.

Question: do we need a session layer? One experienced observer notes that in the original
British proposal to ISO, there was no session layer at all. But the IBM SNA protocol has
one, and so it was included after all. The idea of session control -- who is allowed to talk,
who must listen -- fits with the whole IBM philosophy of communications, a kind of
authoritarian view of the world. In this view, the few applications that need dialog control,
checkpointing, and quarantine can provide it themselves.

Understanding Data Communication Protocols and Software Page 125

8. THE PRESENTATION LAYER
The presentation layer transfers "logical chunks" of data (like commands and responses)
between the application and the session layers, and worries about their syntax (format).
But there are many kinds of data -- numbers, characters, strings, etc -- and many different
ideas of what each should look like, and there are many competing proposed and de-facto
standards.
Application: Presentation Context Presentation Transfer Syntax
System-Dependent <-----------------------> Layer <--------------->
Syntax

The basic problem is this: how do you transfer data between two computers that represent
data in different ways? For instance, one computer might represent text in ASCII, another
in EBCDIC. Two systems might also have different internal formats for storing numeric
data.

At first glance, it would seem that if one computer knew the other computer’s conventions,
it could translate before transmitting. But when you consider that there are many kinds of
computers with many more kinds of conventions, then each computer would have to
embody the full knowledge of every other kind of computer’s data formats, clearly an
impractical approach.

The answer is a "common intermediate representation". For each application, a standard
format is chosen for interchange between unlike systems. The sending system converts to
it, the receiving system converts from it. Thus each system only needs to know two formats
for each application: its own, and the common format. Otherwise, if there were N different
kinds of systems that had to communicate, each system would have to be programmed to
know n different formats for each application.

The presentation layer provides for a set of common intermediate representations for
various "low-level" types of data, in order to make the application independent of syntax.

The most widely accepted presentation standard is CCITT X.409, part of the X.400
electronic mail standard. X.409 syntax includes notations for the following datatypes:
Boolean (true or false), Integer, Bit string, Octet string, Sequence, Set, Numeric string,
Printable string, T.61 string (Teletext), Videotex string, IA5 (International Alphabet 5)
string, UTC time, Generalized time. Each of these data types has a specific ID code, like 2
for integer, 21 for Videotex string. A data item is represented by a triplet:
+------------------+--------+------+
| Datatype ID code | length | data |
+------------------+--------+------+

For example:
17 0B 363130323038313230305A (hex)
23 11 6102081200Z
| | |
| | |Date in Coordinated Universal Time (UTC) format (8 Feb 61 12:00)
| |Length
|Data type code for UTC

with the characters in the data portion represented in IA5 (mostly = ASCII). Characters
are translated from the native code (ASCII, EBCDIC, etc) into IA5 during transmission.

The "Presentation Context" is the mapping between the Application’s abstract syntax
notation and the Presentation layer’s transfer notation. The Abstract syntax is negotiated

Page 126 THE PRESENTATION LAYER

between the Applications, whereas the Transfer syntax is negotiated between the
presentation layers.

Since the presentation layer is actively manipulating the syntax of the user data, it is also
the place chosen for other data transformations, such as ENCRYPTION and COMPRES-
SION, although the ISO standards have little to say in these areas yet.

Kermit provides a simple illustration of the functions of the presentation layer. Kermit has
two presentation contexts -- text and binary. In text mode, the transfer syntax is ASCII,
with lines terminated by CRLF. In binary mode, the transfer syntax corresponds to the
machine’s internal representation. In both contexts, further transformations are also done:

1. Control characters are encoded as printable characters, like #A, always.

2. Characters with 8th bit = 1 are encoded as 7-bit characters, prefixed by &,
negotiated.

3. Repeated characters are prefixed by a special flag and a repeat count, ~<n>X,
negotiated.

While it may be argued that some of these functions might be assigned to the datalink layer
because their intention is to allow the data to get through possibly non-transparent
physical links, the transformations are actually done much at a much higher level, above
the transport layer.

REFERENCES
Textbook, pp.24-28, sections on SNA (112-138) and DNA (165-172) if you’re interested,
333-344 (OSI definition).

Rauch-Hindin, W., "Upper Level OSI Protocols Near Completion", Mini-Micro Systems,
July 1986, pp.53-66.

Stallings, W., "Is There an OSI Session Protocol In Your Future?", Data Communications,
November 1987, p.147-159.

CCITT Recommendation X.215, "Session Service Definition for OSI for CCITT Applica-
tions" (1984).

CCITT Recommendation X.225, "Session Protocol Specification for OSI for CCITT Applica-
tions" (1984).

ISO 8326 (CCITT X.215), Connection Oriented Session Service Definition

ISO DP 8822, Presentation Service ISO DP 8823, Presentation Protocol

CCITT X.409, Presentation Transfer Syntax

Parts of Kermit book

Understanding Data Communication Protocols and Software Page 127

9. THE APPLICATION LAYER
Now that we can establish reliable communication between any two machines on a
network, how can we use these connections to get real work done? For instance, how can
we send mail or transfer files between two machines? When the machines are made by a
single manufacturer, like DEC, IBM, or Wang, a proprietary, vendor-specific solution is
available at a price -- DECnet, SNA, Wangnet, etc.

When the two machines are of different manufacture, often the only solution is a very
expensive proprietary hardware/software packages, like an implementation of IBM SNA on
the DEC VAX (or DEC DNA on the IBM mainframe). But then what happens when you
want to bring a Hewlett-Packard mini or a CDC supercomputer into the picture? Must
each variety of computer have a special connection to each other kind?

Public, open, standard protocols like TCP/IP and its applications, or ISO OSI applications,
address this problem by providing a single standard, "open" network architecture, and set
of applications and protocols, potentially common to all computers. Each computer must
know only its own internal architecture and data representations, and those of the common
network standard.

The Application layer is where the real work gets done -- the work of communicating
meaningful messages between application processes on different machines. The lower
layers "merely" convey data. While it may have seemed that some of the lower layers were
quite complex, at least their jobs were bounded -- each has a circumscribed set of tasks to
accomplish. The application layer has no such restrictions -- it can be as complex as the
task at hand -- the application -- requires.

Typically, the application layer is responsible for (mainly the first two):

• Exchange of "meaningful messages" between two application processes

• Identification of the communicating partners by name, address, description

• Determination of the availability of addresses and necessary resources

• Establishment of authority to communicate

• Authentication of partners’ identities.

• Passing user-selected qualify-of-service parameters to the lower layers.

In the TCP/IP world, there is no application "layer", any more than there is a session or
presentation layer. Rather, application programs communicate with each other directly
through the transport service, which is typically buried in the computer’s operating system,
using calls to the computer’s file system (open, close, read, write). This approach is simple,
and it allows applications that were not even written for network operation to use the
network as though it were a terminal or a disk file.

In the ISO/OSI world, matters are a bit more complicated. "User elements" are the
interface between the application program and the application layer, or "application entity"
(AE). In each AE, the application process has to choose a particular application service
element (ASE) to perform its task. Sets of user elements are defined for each application
(file transfer, RJE, electronic mail, Videotex, etc). Within a particular computer, these
would be called ASE1, ASE2, ASE3, etc. Special ASEs have already been defined for X.400
and FTAM. A single application can access one or more ASEs.

Page 128 THE APPLICATION LAYER

And there is a directory service ASE, so that, say, a file transfer client on system A can
learn the address of the file transfer server on system B in order to make a connection.
This is how applications connect with other in the first place.

The application is known by its presentation address. The Associate Control Service
Element (ACSE) provides the mapping between the process and this address.

There is also talk of a Commitment, Concurrency, and Recovery (CCR) ASE. Concurrency
refers to management of multiple simultaneous access to the same resource, e.g. a
database. Commitment refers to one system assurring the other that the requested work
has been done. blah blah... Does this sound familiar? It is the application layer’s interface
to the session layer’s checkpoint and quarantine features, which somehow penetrates the
presentation layer. Similarly, Reliable Transfer Service (RTS, not an ASE, exactly, but a
"module") lets the application at the session layer’s dialog control functions -- "give turn",
"please turn", etc.

An important concept at the application layer is the relationship between "client" and
"server". In a network, there are typically various kinds of servers ready and waiting for
work to do -- directory service, file transfer, mail delivery, etc. They are activated when a
user (a person) runs a "client" program, which finds and engages the server.

In the TCP/IP world, servers are accessible through "well-known socket numbers" -- special
transport addresses that are publicized. In the ISO world, we have a sublayer of the
application layer called Remote Operation Service (ROS), whose purpose is to split a
distributed application into "modules" or "agents", which communicate through an
asymmetrical "access protocol" (asymmetric because, e.g., only the client has the right to
initiate a dialog).

ABSTRACT SYNTAX NOTATION
The application layer is concerned with the "semantics" (meaning) of the data being
transferred -- files, commands, screens, mail messages, database queries, etc. In order for
applications on different systems to communicate, messages are expressed in "abstract
syntax". This is agreed-upon notation for high-level concepts, distinct from the low-level
translations done at the presentation layer, which is concerned only with how numbers,
characters, and strings are represented during transmission.

The OSI abstract syntax is called ASN.1 (Abstract Syntax Notation One). The Abstract
Syntax Notation describes the data structures being exchanged, in machine-independent
fashion.

(...find out about ASN.1...)

The MOST COMMON APPLICATIONS are FILE TRANSFER, NETWORK TERMINAL
CONNECTION, and ELECTRONIC MAIL.

FILE TRANSFER AND MANAGEMENT
A file transfer application allows files to be moved between systems that possibly differ in
how they store, name, and format data into files, and may also provide additional file
management features including file deletion, renaming, appending, directory changing and
access, etc.

A file transfer protocol must be able to transfer files correctly and completely, clearly
marking the beginning and end, and supply the file’s name and possibly other attributes to

Understanding Data Communication Protocols and Software Page 129

the receiving system, and, for certain types of files (e.g. text), perform any necessary
transformations to make the file useful on the receiving system.

An important issue in file transfer is whether the file can be sent to a foreign system and
then later retrieved so that the new copy is identical to the original. This property is called
"invertibility".

Another issue concerns the transfer of files to systems whose file storage or naming
conventions are more restrictive than the originating system’s. For instance, if files on
system A have 50-character-long names, but system B only allows 6-character names,
special care must be taken when sending files from A to B to ensure that names are
converted to legal form for B, and that duplicate names are avoided.

There is increasing stress on the appearance of text, and increasing demand to preserve its
printed representation, including graphic effects like underlining, boldface, italics, different
type sizes, etc. How can you transfer a document among Wordstar, Wordperfect, and
MacWrite and have it look the same? Each vendor is developing its own "document
description language" for formatted documents -- IBM’s DCA (Document Content Architec-
ture) and Document Interchange Architecture (DIA); DEC’s DDIF (Digital Document
Interchange Format); US Navy’s DIF (Document [Data?] Interchange Format); Adobe’s
PostScript; Interleaf; Imagen’s Impress, Xerox’s (something) ... These organizations are
vying with one another to have their particular design adopted as "the standard" in this
area. For now, file transfer protocols simply transfer files in these formats just as if they
were any other files, and rely on the users at each end to pre- and post-process them if
necessary.

Out of these has arisen some ISO standards efforts:

• Office Document Architecture (ODA), ISO/DIS ..., structures for exchange of
processible documents.

• Office Document Interchange Format (ODIF), ISO/DIS ..., ASN.1 encoding that
constitutes a particular representation for ODA.

Similarly for databases & spreadsheet data (DIF, DBF, SYLK, WKS)...

Similarly, representation of computer-generated graphics in system-independent form has
given rise to a set of competing standards -- GKS, Core graphics, CGM (ANSI), CGI, HP’s
HPGL, IBM’s ADMGDF, Computer Associates DISSPOP, ANSI PHIGS (Programmers
Hierarchical Interactive Graphics System), etc -- as well as standards for specific
applications like CAD, like IGES. Again, files are stored in these formats and then
post-processed after transfer.

In the continuing quest for "interoperability", we come across a significant contradiction.
Vendors are intrinsically motivated to develop bizarre and byzantine file systems -- files
with all sorts of attributes and peculiarities -- in order to tie their customers to their
equipment. (...examples -- FILES-11, RMS, MVS, CMS, Macintosh, ...) These vendors have
no incentive to make their file systems conform to some kind of "standard". Yet, if we are to
have a truly interoperable, heterogeneous computing environment, there has to be a way of
fitting ALL files everywhere into a manageable set of categories.

One approach is to classify all files as either "text" or "binary". That is, as either
convertible, or not. A text file is typically restricted to the common graphic characters --
letters, digits, and a few punctuation marks, as defined in US 7-bit ASCII. Such files can
be represented on most computers (some exceptions include CDC supercomputers that have

Page 130 THE APPLICATION LAYER

only 6-bit character sets). All others are considered "binary", and are transferred as-is,
with no attempt at conversion. This is the approach of "basic" Kermit, and of Arpanet FTP.

At the other extreme, we have efforts to represent every conceivable attribute of every
manufacturer’s file system. This kind of thing gets out of control pretty fast, even within
one vendor’s circumscribed world -- for example, DEC, in its Data Access Protocol (DAP)
supports 42 different "generic system capabilities" (like whether files can be preallocated,
appended to, accessed randomly, etc), 8 data types (ASCII, EBCDIC, executable, etc), 4
organizations (sequential, relative, indexed, hashed), 5 record formats (fixed, variable, etc),
8 record attributes (for format control), 14 file allocation attributes (byte size, record size,
block size, etc), 28 access options (supersede, update, append, rewind, etc), 26 device
characteristics (terminal, directory structured, shared, spooled, etc), various access options
(new, old, rename, password, etc), in addition to the better known file attributes like name,
creation date, protection code, and so on. All this was deemed necessary even when the
designers had only a small number of machines to worry about, all from a single vendor.
And with all that, it’s still optimistic to expect to transfer anything but ASCII stream files
between two DEC machines of different architecture (say VAX/VMS and DECSYSTEM-20).
What, then, when we bring IBM and CDC and Apple into the picture???

.. Xmodem:

Xmodem is a bare-bones protocol for transferring the contents of a single file. No
conversions are done at the presentation, application, or any other level, and in most
variants, the filename is not transmitted separately, or at all. Xmodem might be viewed as
a datalink protocol used for file transfer. When Xmodem works at all (as it often does not,
due to datalink transparency problems), file transfer is invertible.

An Xmodem connection is initiated "manually" -- the user uses terminal emulation on one
computer to connect to another, starts up an Xmodem program on the remote computer,
puts in the send or receive mode, "escapes back" to the local computer, and puts it in the
opposite (receive or send) mode.

.. Kermit:

Kermit is a simple example of a file transfer protocol, and illustrates some of the basic
issues. Like Xmodem, Kermit is a manual operation -- the user must establish the
connection and start Kermit programs on both ends. Once started, however, the remote
Kermit may be put in server mode (like a network file server) so that the Kermit client can
control the Kermit server by means of protocol messages.

The Kermit file transfer protocol identifies the file by name, unambiguously marks its
beginning and end, and, unless instructed otherwise, converts the contents of the file to a
common intermediate representation during transmission, so that it may be converted and
stored in useful form on the target system. Such conversion is normally done on "text files"
and is avoided for "binary files".

Text files consist of "records" or "lines", each consisting of a string of characters in a
particular character set like ASCII or EBCDIC. Character set conversion is done at the
presentation layer, and record format conversion takes place at the application layer. For
instance, an IBM mainframe might store text in 80-column EBCDIC "card image" format,
and a UNIX system uses an ASCII stream, with records delimited by LF. Kermit’s common
intermediate representation for text is ASCII with CRLF after each line, so an IBM
mainframe sending a file would translate from EBCDIC to ASCII at presentation level, and
from fixed-length 80-character blank-padded records to CRLF-terminated lines at applica-

Understanding Data Communication Protocols and Software Page 131

tion level. The UNIX system would convert from CRLF-terminated lines to LF-terminated
lines upon receipt. MS-DOS systems need no conversion, since their text storage format
coincides with Kermit’s transmission format.

The Kermit protocol defines a wide range of file attributes, such as length, creation date,
format, record length, and so forth, which may be transmitted along with the file, in hopes
that the target system can preserve them. The attributes are defined in a
system-independent way, and thus provide a common intermediate representation for these
parameters. To date, few Kermit programs actually make use of this mechanism.

Transfer of binary files is generally invertible (the major difficulty is in EOF indication),
and text files also tend to be invertible (ASCII/EBCDIC conversion is the major stumbling
block, since EBCDIC-to-ASCII translation itself is not necessarily invertible). Kermit does
not address higher-level concerns, such as the appearance of formatted or typeset text, nor
does it allow for checkpointing.

The Kermit protocol defines mechanisms for file management as well as transfer, including
file deletion, renaming, copying, directory changing and space inquiry, etc; thus Kermit is
really a file transfer and management protocol.

.. Arpanet FTP:

The Arpanet File Transfer Protocol (FTP) is very similar to Kermit, except that the file
transfer server is a dedicated network resource, always available, rather than a process
that must be started by the user on the remote end. The user runs an FTP "client" program
and specifies the host name, user ID, and password of the remote system. The connection is
established and the access permission checked, and then the user is allowed to send or get
files, and to perform file management functions according to the remote system’s access
permissions.

As in Kermit, the user must specify whether files are text or binary so that the application
can decide whether to do conversions. Text files are further classified as print or non-print
files, so that simple printer control conversions can be done (ASA or Fortran-style vs LF,
FF, VT, etc).

Although conversions are not done on binary files, options are required to let the user
decide how to store binary data when the target system has a different word length (e.g. 32
bit data sent to a 36-bit word machine, or vice versa). In addition, the "client" and "server"
programs let each other know what kind of system they’re running on, and if the systems
are the same, then special liberties can be taken (for instance, conversion to CIR can be
skipped, or files can be transferred in chunks that correspond to the computer’s disk block
size for efficiency). Random access ("paged") files are also allowed, with each page preceded
by a page header, specifying the position and length of each page.

FTP defines a Network Virtual File System (NVFS) with standard commands and file and
directory naming conventions. There are separate control and data connections. The
control connection (used for establishing connections, requesting files, setting file types, etc)
uses the TELNET virtual terminal protocol (see below) and NVFS syntax. The data
connection sends file data, converted (if necessary) to ASCII, with lines terminated by
CRLF, unless otherwise specified.

.. ISO FTAM:

The ISO File Transfer, Access and Management protocol is the most ambitious file transfer

Page 132 THE APPLICATION LAYER

scheme to date. To resolve differences among computer systems of different manufacture,
operating systems, etc, it defines a common intermediate representation of an ideal file
system, called a "virtual filestore", which embodies all the concepts of directory structure,
file formats, attributes, naming conventions, access rules, etc. The file transfer application
layer converts to and from virtual filestore conventions during transmission.

FTAM uses various ASEs for connection establishment, data transfer, and connection
release. Data syntax conversion is negotiated during connection establishment and is
performed by the presentation layer. The session layer, accessed via CCR, allows long file
transfers to be checkpointed.

(...here’s another crack in the layered structure...)

When an FTAM PDU is given to the presentation layer for transmission, the latter has no
way of distinguishing FTAM PCI from data to be converted. Obviously, PCI should not be
converted. Therefore, FTAM transfers PCI and data separately, within separate presen-
tation contexts.

(remind you of Kermit S and A packets?)

Data transfer may occur on a whole-file basis, or on pieces of files; for instance, FTAM may
be used to update a remote database. The abstract syntax of records within a sequential
file are according to ASN.1, and FTAM defines its own mechanisms for more complex (e.g.
hierarchical tree-structured) files, or for unstructured binary files.

In addition to data transfer, FTAM includes the following functions:

• Access control

• Accounting and charging

• Concurrency control via locks (multiple writes, updates)

• Checkpointing

• A comprehensive set of error recovery mechanisms

.. Exchange of Business Documents:

The ANSI X.12 suite of standards apply to a special instance of file transfer: the exchange
of business documents like purchase orders and invoices. An application-level language
called BDI (Business Data Interchange) has been defined to describe business transactions
in terms of document headers (company name, address, date, PO number, terms, etc), line
items (description, quantity, price), summary (total amount), etc. (Also EDI...)

.. Distributed File Systems:

When a file transfer protocol is embedded within a computer’s file system, then remote files
may be accessed as though they were local, and all the file operations (create, copy, rename,
delete, etc) may be performed transparently, regardless of the physical location of the file.
SUN’s Network File System (NFS) is the best-known example.

.. Disk servers:

A disk server is a file-oriented application, but not a file transfer protocol. Rather, it is a

Understanding Data Communication Protocols and Software Page 133

network application that replaces an operating system’s disk device driver. Rather than
treating files as logical units, it allows applications that call upon the OS’s disk service
(read sector, write sector) to access remote disks as though they were local. The difference
is that operations occur on the sector level rather than the file level, so that no conversions
are done, and in fact no knowledge of the file system is required in the network application;
all of this knowledge is embodied in the OS’s higher level file service, which is ignorant of
whether the file is on a local disk or "in the network". Disk servers are commonly found on
local area or PC networks.

.. Distributed Databases:

Distributed databases are another variation on file transfer, but in this case multiple users
are accessing a database that may be spread across several systems, querying and updating
records in a random way. A distributed database is therefore a special case of a distributed
file system, in which many physically separate files may be logically mapped into a single
file, which many users on many different systems may be accessing simultaneously. There
are at least two special problems to be solved: locating the physical file that contains the
desired record or table, and prevention of uncoordinated queries or updates. The former
requires a network-wide directory or index service (which is not easy when the database is
relational), and the latter must be handled by a distributed lock manager.

. Virtual Terminal Service:

And what about terminal sessions? How do you log in from a Data General terminal over a
network to a host that only knows how to control DEC terminals? How do you transfer
structured documents between applications that represent them in different ways?

Since there are many different terminals on the market, each with its own peculiar set of
screen control sequences and function keys, it is impractical to expect each computer to
know the details of every kind of terminal. Your computer may know how to interact with
your particular terminal (or your PC which is programmed to emulate a particular
terminal), but that does not mean that other computers on the network can do so too.
Virtual terminal service defines a common intermediate representation (CIR) for terminal
control sequences, so that each system need understand only its own terminals plus the
CIR, or "virtual terminal". Incoming CIR directives are translated to control sequences
appropriate to the particular terminal, and terminal function or interrupt keystrokes are
converted to CIR for transmission. Conversely, the remote host virtual terminal server
translates an application’s outbound terminal control sequences into CIR, and incoming
CIR into interrupt characters or function-key codes.

(...here we could discuss X.3, X.28, and X.29...)

The ARPANET Network Virtual Terminal (NVT) specification (TELNET, RFC854) provides
a very simple virtual terminal, with CIR only for those keys that effect how the terminal
can control the computer -- BREAK, halt process, discard output, erase line, erase
character, etc. For the remote host to control the local terminal’s screen, the specific
terminal type must still be supported by the remote host.

(contrast with MIT SUPDUP or UNIX termcap...)

The ISO virtual terminal protocol (VTP, ISO/DIS 9040-9041), on the other hand, includes
abstract representations for every conceivable terminal function -- erasure, emphasis, fore-
and background color, 2- or 3-dimensional display, windows, multiple character sets and
fonts, cursor addressing, character attributes, block mode, etc etc. E.g. you can log into a

Page 134 THE APPLICATION LAYER

VAX as a VT100 from an IBM mainframe 3270 block-mode terminal. VTP is very, very,
very complicated.

. Electronic Mail:

Electronic mail is a special kind of file transfer, in which "files" are really messages
addressed to a particular user on the network. The message generally consists of a group of
"headers" (like From, To, Date, and Subject) and a message body (text). Messages are
transferred from the originator to the "mailbox" of the addressee(s) over the network (or on
the local system). Most mail protocols provide for the authentication of the sender and
verification of the receiver via special protocol messages outside of the text, allowing mail to
be transferred reliably and securely. That is, the messages headers are for use only by the
user program, not the network.

Delivery is usually accomplished not by user programs, but by privileged system processes,
to prevent forged mail and unauthorized file access. Most mail systems provide immediate
delivery when possible (i.e. when a network connection to the target system can be
established), and also queued service (so that messages can be delivered later if the remote
system is down).

.. ARPANET SMTP (RFC 821) and Text Message Format (RFC 822):

The ARPANET protocols include a standard for mail delivery (Simple Mail Transfer
Protocol, or SMTP), and for message format. SMTP, as its name implies, is a simple
mechanism allowing one host to deliver mail to another. The typical sequence is "Here
comes a message for users A, B, and C on your system" "OK, but I don’t have a user B" "OK,
here’s the message" "OK, I got it".

The message format standard defines what header items (like To, From, Date, and Subject)
are required, what other ones are optional, and in what format they should appear. This
standard allows a user program (mail manager) to be written that will accept and
understand mail from any conforming system. The user program may be as powerful as
desired. For instance, a user might be able to give a command like "forward to user
christine at host xxx all messages from users at host yyy which contain the words ’kermit’
or ’frog’ and were received between April 13 and April 17". In this case, the mail program
acts almost like a database language, extracting the desired messages (based upon the
contents of their From, Date, and Text fields) and forwarding them as indicated.

A major issue in ARPANET mail, as the network grows by the interconnection of hundreds
of local area networks, is addressing. At first, when there were only a couple hundred hosts
on ARPANET, it was sufficient for all mail to be addressed to user@host. This meant that
each host’s mail system needed a host table containing the names and corresponding
network addresses of all the nodes. With nodes now numbering in the many thousands,
this is no longer practical -- host tables exceed the memory size of many computers. Thus,
network host names are now expressed in a hierarchical manner. Instead of mailing to
"christine@cucca" we now mail to "christine@cucca.cc.columbia.edu". When someone sends
mail to us from outside, it proceeds through a hierarchy of "which network?" (edu), "which
site on the network?" (columbia), "which department at the site?" (cc), and "which computer
in the department?" (cucca). Thus, any given system need only know the addresses of sites
on its own network, and the addresses of gateways to other networks. When a message
arrives at a gateway, it is inspected for a site address and forwarded appropriately. (This
discussion applies to addressing in general, and is not specific to mail, though it is currently
most visible to mail users).

Understanding Data Communication Protocols and Software Page 135

.. CCITT X.400 Message handling system (MHS)

The X.400 series of recommendations specifies an application for interpersonal electronic
mail. As in ARPANET, there is a user program (or "user agent"), which is concerned with
the message itself (heading and text, or "content"), and a message transfer agent that
executes the delivery protocol ("envelope"). These are two separate sublayers of the OSI
application layer. X.400 implementations have already started to appear on the market.

X.400 is very similar to ARPANET mail, but (naturally) much more complicated (the X.400
series of recommendations is about 300 pages long). Much attention is given to address
formats, since they are designed to span all users on all networks in the world. A
full-blown X.400 address may have many parts, including a country name, administrative
domain name, private domain name, personal name, organization name, department name,
X.121 address, telematic terminal identifier, etc etc. There are long lists of valid formats
and entries in these catagories.

Protocol is given for access management, content type indication, encoding, time stamping,
message identification, non-delivery notification (and prevention thereof), recipient lists,
alternate recipients, deferred delivery (and cancellation thereof), delivery notification,
(non-)disclosure of other recipients (bcc’s), return of contents, delivery query,
auto-forwarding, primary and copy recipient indication, expiration dates, cross-reference
indication, indication of importance, sensitivity, obsolescence, etc; reply request, encryption,
and much more.

There are already more than 20 X.400 products on the market. It has become a relatively
mature standard. But to be truly universal, it will need a DIRECTORY SERVICE, so that
users can find out the e-mail addresses of people they want to send mail to. When you
consider that the number of worldwide computer users may soon number in the billions,
this is not an easy function to design or implement. The CCITT is working on
recommendation X.500 to "address" this issue. Think of lookups in a billion-entry
database... responses could take hours. What does that do to timeouts? Breaking the
problem into domains (country, network, organization, person) delegates the responsibility,
but adds complexity...

There is a Version 2 of X.400 on the way, that will allow for greater security, mailboxes,
physical delivery, etc.

Incidentally, you would think that X.400, being an international standard, would make
some allowances for transmission of messages in different character sets. But it does not,
no more than do the Arpanet protocols. X.400 allows only International Alphabet 5 (IA5 =
ISO646 = US 7-bit ASCII with 9 positions left open for "national characters").

References
Roux, E., "OSI’s Final Frontier: The Application Layer", Data Communications, Jan 88,
p.137-145.

Clark, D.D., "Modularity and Efficiency in Protocol Implementations", RFC817 (1982). An
iconoclastic view of layering.

ISO/DIS 8649, Common Application Service Elements (CASE)

ISO/DIS 8824, Specification of Abstract Syntax Notation One (ASN.1). ISO/DIS 8825,
Specification of Basic Encoding Rules for ASN.1.

Page 136 THE APPLICATION LAYER

Postel, J., File Transfer Protocol, RFC959 (Oct 1985). ISO/DIS 8571/1-4, File Transfer,
Access and Management (FTAM).

Postel, J., TELNET Protocol Specification, RFC854 (May 1983). ISO/DIS 9040, Virtual
Terminal Service - Basic Class (1986). ISO/DIS 9041, Virtual Terminal Protocol - Basic
Class (1986).

HIGH LEVEL ISSUES
. Performance:

Assuming that systems can be connected over a network, does the connection provide
adequate performance? A set of criteria has been developed by the US Government in
FED-STD 1033 to measure 26 different digital communication system performance
parameters in the categories of efficiency (access time, bit rate, etc), accuracy (bit error rate,
extra bit probability), and reliability (bit loss probability, etc), as well as the common
metrics MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair).

Measurements like these are important in establishing system design goals, procurement
requirements, and test specifications. Depending on the network technology, measure-
ments will vary considerably under different conditions of load, etc. For instance, a
contention-based network like Ethernet will perform well until it reaches a point of
saturation, and then performance will degrade rapidly. The performance of datagram
networks will also vary according to congestion.

Heated debates continue to rage over the performance of connectionless vs
connection-oriented networks and protocols. blah blah...

. Conformance Testing:

When a vendor announces a network product that is compatible with OSI or some other
networking architecture, customers must be prepared to test wheter the product works as
claimed under both normal and abnormal conditions. Techniques are required for
introduction of failures and errors at all levels, and for determining whether data is
delivered correctly. Standards organizations like ISO, CCITT, ANSI, and NBS are all
involved in this area.

The NBS has developed a formal notation for description of protocols, and programs for
interpreting this notation, along with a fault generator to insert errors and programs to
measure the performance of the model network. This technique cannot "prove" the
correctness of a protocol specification, but it can evaluate its performance statistically. It
also cannot evaluate an off-the-shelf vendor product. Organizations do exist, however, to
validate implementations of specific protocols, like X.25.

. Security:

In the days of standalone computers, security was an issue that could be dealt with in
relatively simple ways -- locks, etc. As soon as modems were connected to computers and
dialins were allowed, the potential for unauthorized use escalated dramatically, and
breakins continue to this day.

Networks open systems up even further to security violations. Before there were networks,
"hackers" had to dial hundred of numbers at random, hoping to get a carrier tone. Now
they can dial a single number (like their local Telenet or Tymnet node), and from there

Understanding Data Communication Protocols and Software Page 137

every system they attempt to access is guaranteed to be a computer. Furthermore,
host-to-host networks put the power of large computers at the disposal of hackers trying to
break into other computers.

The pendulum swings... The 1960s and 70s saw increasing need for distributed computing,
access from home, host-host connections, etc, and during this period the hard problems of
data communication were solved -- flow control, error detection and recovery, routing,
congestion control, multiplexing, etc etc. But once reliable communication was established,
the need to restrict its use became paramount.

A special problem is associated with PC networks, and particularly with PCs attached to
host-host networks. In this context, a "host" is a multiuser computer in which users
authenticate their access with a username and a password, and where they have their own
file storage area which they can protect from other users. Most PCs (like MS-DOS systems,
the Apple Macintosh, etc) do not have usernames and passwords, but rather, assume that
anyone who has access to the PC itself also has unlimited access to all its files.

To put PCs on a network, then, opens the network up to "anonymous" access, in which the
identity of the PC user cannot be authenticated, and it opens the PC file system up to
uncontrolled incursions. To address these problems, vendors of PC networks provide
special "file server" machines which have user IDs and passwords, just like hosts. Shared
files are on the file server, subject to access controls specified by their owners.

Any network link is subject to tapping, either directly, or by monitoring electromagnetic
emissions, etc (optical fiber might be an exception). In a complicated network connection,
there’s no guarantee against monitoring. The only practical solution is encryption. But
where can it be done?

• Datalink layer - This can be quite effective. It means that every single bit that
is transmitted can be encrypted, and therefore presumably immune to monitor-
ing. But either the datalink software itself must be modified to do this, or
special scrambler/unscrambler boxes must be built which sit physically be-
tween the network interface and the transmission medium. Such boxes are
starting to appear on the market (e.g. recent DEC Ethernet encryption device).
Complications on shared media when some but not all nodes have these boxes...

• Network layer - Not much can be done here, as the network layer must have its
protocol information (addresses) intact in order to function. Some argument
can be made that the IP approach lends itself well to security, because the IP
packets can take different routes, so a spy on a single link cannot see the whole
conversation. If the IP packets are encrypted, then the spy can’t even see
which ones go with which connection.

• Transport layer - End-to-end encryption also makes sense -- it can be
host-based, leaves the communication subnetwork alone to do its job, and can
therefore be done all in host-resident software. The entire transport PDU can
be encrypted.

• Presentation layer - The ISO says it belongs here, where user data is
transformed into and out of "transfer syntax". But this leaves the transport
and session information in plain text, allowing spies to see who is talking to
whom.

• Application layer - Can provide any and all security services.

Page 138 THE APPLICATION LAYER

However, even the contents of the messages (say transport layer and up) can be encrypted,
it is still possible for spies to do network traffic analysis to find out, at least, what host
talks to what other host, and how much.

ISO TC 97 SC 21 WG 1 recently finalized ISO 7498/2, Security Architecture, the beginning
of a framework for what kinds of security services can go in what layer. Such services
include peer identity authentication, data origin authentication, access control, connection
confidentiality, traffic flow confidentiality, etc. Methods used to provide these services at
the various layers include encryption, digital signature, access control lists, traffic padding,
routing control, "notarization", ...

. Outstanding Issues:

Major issues to be resolved in OSI include naming and addressing (how to address uniquely
every application process in the world -- and beyond?) and data security, especially across
national boundaries.

The higher OSI layers are very immature, and their boundaries and terminology are even
less clear than those at the lower layers. What functions belong in the session,
presentation, and application layers? Are all three really necessary? Or will the upper
three layers tend to be combined into each application program?

As higher-level protocols proliferate, an unambiguous precise method for describing them
(and even generating the software that executes them) is necessary. Many have been
proposed, some are already in use, but there is no standard yet.

Will there ever be a standard "user interface"?

TRENDS
Networking is all proceeding in the ISO/OSI direction. Major vendors like IBM and DEC
are gradually bringing their proprietary protocols into conformance with OSI standards,
and the US government has mandated OSI networking in future contracts, and in
particular, the ARPANET TCP/IP suite of protocols and associated applications will be
"migrated" to OSI.

However, OSI software will be a long time in the making, and it will be complex and
expensive (if not in dollars, then in computer resources). And as higher-level protocol
definitions are being fleshed out in all their generality, they begin to strain the capabilities
of today’s common operating systems (imagine implementing full-blown FTAM for the
MS-DOS file system).

Furthermore, the strict layering of the OSI model does not necessarily mesh well with
operating system design. Because of performance or other considerations, particular layers
(especially the upper four) may find themselves split between operating system modules,
user programs, libraries, etc, or may be lacking altogether. For example, it is the transport
layer’s responsibility to break user data into network-size packets. But because of layering
principles, it must do this in total ignorance of the application. But the packet size might
be very important to the application -- file transfer works best with very long packets, but
full-duplex virtual terminal performance could be very poor unless packets were very short.

While "waiting for ISO", many organizations are making do with TCP/IP; compared to OSI,
the ARPANET protocols are simple, work well, and are available for many different
systems (often at little or no cost), operating over both LANs and long-haul connections.

Understanding Data Communication Protocols and Software Page 139

And for those systems that don’t have network support available (or can’t afford it),
RS-232-based communications -- terminal emulation and asynchronous protocols like
Kermit -- will continue to fill the "network gaps" for many years to come.

And let’s not forget ISDN. Although there has been little evidence of it yet, there is a good
chance that one day a OSI-based telephone-switched digital network capable of carrying
data and video as well as voice will span the globe, potentially allowing anyone with a
telephone to transfer data or pictures with anyone else. As the higher-layer OSI protocols
are completed, and the communications infrastructure is laid, universal interconnection
will become increasingly possible. (See Also FED-STD 1037, Glossary of Telecom-
munications Terms.)

3270 - A series of IBM synchronous, EBCDIC, block mode, half-duplex terminals, the
preferred (by IBM) type for use with IBM System/370 mainframes, and the generic term for
this type of user-system interaction.

Access Method - IBM’s way of saying "device driver".

Accunet - Digital service from AT&T Communications, offering circuits at speeds from T1
(1.54Mbps) down to 2400 bps, as well as packet services.

ACK - An acknowledgement. ASCII character Control-F, or a message in a particular
protocol that acknowledges successful receipt of another message.

ACU - Automatic calling unit, a computer controlled telephone dialer.

Adaptive routing - A type of network routing in which the path from one node to another
can vary according to changing conditions.

ADCCP - Advanced Data Communications Control Protocol, the ANSI standard datalink
protocol.

Address - A location in memory, on a disk, or in a network, expressed as a number ranging
from 0 to the number of the highest location. A location in memory may be a byte or a
word; a location on disk is a block. Memory addresses are sequential, disk or network
addresses usually are field encoded (track-sector-block, net-subnet-host-socket, etc).

ANSI - The American National Standards Institute, a nonprofit nongovernmental organiza-
tion supported by more than 1000 trade organizations, professional societies, and
companies, which serves as the USA’s representative to the Internaional Organization for
Standardization (ISO). ANSI standards relevant to asynchronous data communication
include the ASCII specification, the character structure and parity standard, and the
bit-sequencing standard.

APPC - Advanced Program-to-Program Communications (IBM), a process-to-process com-
munication protocol based on LU 6.2 and PU 2.1.

Application Layer - The highest layer in the ISO/OSI and most other networking schemes;
the layer where the actual work ("data processing") is accomplished.

Application Program - A program that can be written or run by a user (as opposed to a
privileged program, or operating system software).

ARPANET - Advanced Research Projects Agency Network, a research computer network

Page 140 THE APPLICATION LAYER

whose development was sponsored by the US Dept of Defense. One of the first packet
switched networks. Characterized by connectionless networking, uses the DoD TCP/IP
transport/internetworking protocols.

ARQ - Automatic Retransmission (or Repeat) Request.

ASCII - American Standard Code for Information Interchange, ANSI X3.4-1977, a
128-character code used almost universally by computers for representing and transmitting
character data, in which each character corresponds to a number between 0 and 127.

ASCII protocol - Transfer of ASCII data from one computer to another with no error
detection or correction.

Asynchronous - Character- or byte-oriented data transmission in which no out-of-band
coordination takes place between the sender and the receiver, where character boundaries
must be deduced from the structure of the data itself. In serial communication,
delimitation is accomplished by start and stop bits.

Backbone - A high-capacity cable or network used to interconnect lower-speed networks or
devices.

Balanced - Said of an HDLC-like datalink protocol in which both stations may transmit
both commands and responses. Also, a mode of physical transmission in which each signal
occurs on two wires, as in RS-422 and RS-423. Opposite of Unbalanced.

Bandwidth - The frequence range available for signalling (highest minus lowest), or more
informally, the capacity of a circuit.

Baseband - A medium that carries just one information channel.

Baud - Unit of signalling speed. Typically, but not necessarily, equivalent to bits per
second.

Baudot - A 5-bit character code used in teletype communications.

BASIC - Beginners All-purpose Symbolic Instruction Code, an interactive programming
language noted for its ease of use, convenience for program development, slowness of
execution, and poor structure.

Batch - A mode of transmission or execution in which an entire "job" is executed from
beginning to end. Also, any computer application that requires little or no interaction from
the user.

BCC - Block Check Character, see Block Check.

BCD - Binary Coded Decimal

Binary - (a) Base-2 number system with the digits 0 and 1; (b) any selection or condition in
which there are two possibilities; (c) non-textual.

Binary Coded Decimal (BCD) - A 6-bit character code used on older IBM computers.

Binary Synchronous Protocol (Bisync, BSC) - An early datalink protocol developed by IBM.

Understanding Data Communication Protocols and Software Page 141

Bit - Binary Digit (0 or 1). Smallest unit of storage or transmission in a computer.

Bit stuffing - a technique for achieving datalink transparency by inserting and stripping
bits into data whose patterns are reserved for control purposes.

Block - (a) A delimited, or fixed-length, sequence of bytes; (b) to wait for a requested action
to complete.

Block Check - A quantity formed from all the data in a block, for instance, by adding up all
the bytes (a checksum) or combining them in some other way (like CRC), and then
appended to the block itself, so that the recipient of the block can determine whether it was
corrupted in transit.

bps - Bits per second.

BREAK - In asynchronous serial communication, a spacing condition that lasts at least 250
milliseconds, thereby causing a framing error which can be detected by the receiving
UART.

Bridge - A device that filters packets between two adjacent branches of a shared-medium
(broadcast) local area network.

Broadband - A communication medium that can carry a greater frequency range than
normal voice-grade transmission media. Typically split into many channels using
frequency-division multiplexing.

Broadcast - A method of transmission in which all devices receive simultaneously.

Bus - A shared communication medium along which data signals travel to all attached
devices simultaneously, with a method provided for arbitrating contention. The basis for
bus-topology communication networks like Ethernet or token bus.

Buffer - A storage area for data. In data communications, a device driver puts arriving
data into a buffer in "real time", and the application program takes the data out at its
leisure, freeing the application program from time-dependent considerations.

Byte - A unit of storage intended to hold a character, usually 8 bits long, abbreviated
B. 8-bit bytes are sometimes called "octets". Computer memory and disk capacity is often
measured in thousands (K) or millions (M) of bytes, e.g. 256KB. In most computers, a byte
is the smallest unit of information that may be moved into and out of memory.

Byte oriented - a communications device, medium, or protocol in which a character (or byte)
is the smallest unit of information that can be transferred.

Byte stuffing - A datalink technique for "quoting" data bytes that are the same as those
used for framing or synchronization.

CAD - Computer Aided Design.

Carrier - A steady signal capable of being modulated (in either amplitude or frequency) by a
another signal representing binary data. Also, a supplier of communication services
("common carrier").

CASE - See Common Application Service Elements

Page 142 THE APPLICATION LAYER

CATV - Community Antenna Television ("cable TV"), a transmission system using 75-ohm
coaxial cable, also used in broadband networks.

CBEMA - Computer Business Equipment Manufacturers Association.

CBMS - Computer Based Message Switching (Electronic Mail).

CC - Connect Confirm.

CCITT - Comite Consultatif International Telegraphique et Telephonique, a committee of
the International Telecommunications Union (ITU), which in turn is an agency of the
United Nations. The CCITT issues standards, called Recommendations, in the area of data
communication. The X series of Recommendations (X.25, X.29, etc) deals with digital
networking, and the V series (V.21, V.22bis, V.26ter, etc) addresses data transmission over
the switched telephone network.

CD - Carrier Detect: The RS-232-C signal used by the DCE to inform the DTE that carrier
is present. Also called DCD and RLSD.

Cellular Radio - A technique for transmitting data via radio broadcast, often involving a
mobile station, which is serviced by different transmitters as it changes location.

Central Processing Unit - The part of a computer that executes programmed instructions,
consisting of an instruction decoder, arithmetic and logical processing units, etc.

Channel - Strictly speaking, a one-way communication path between a receiver and a
transmitter. A full-duplex channel is actually two paths, either two separate wires, or one
wire carrying signals at two frequencies.

Character - A discrete unit of information, a byte corresponding to a member of a given
character set, like ASCII or EBCDIC. A character may be printable (letter, digit,
punctuation, etc) or nonprintable (used for control purposes).

Character oriented - Said of a datalink protocol in which characters from a particular
character set (like ASCII or EBCDIC) are used for control purposes.

Checksum - A block check based on the arithmetic sum of all the bytes in a block.

Circuit - A communication path two points.

Circuit switching - A method of communication where an electrical connection is made
between between the calling and called stations, for their exclusive use until the connection
is released.

Clock - A device that controls a computer’s or communication device’s frequency, speed, etc.
In data communications, the clock can be used to generate interrupts to be used for
sampling, polling, or timeout.

Clocking - Time synchronizing of communications data.

Coaxial cable - Transmission medium with inner and outer conductors separated by
insulator, allowing high bandwidth, low susceptibility to interference.

Code - (a) A set of symbols, such as ASCII or EBCDIC character codes; (b) In programming,

Understanding Data Communication Protocols and Software Page 143

another word for program, as in source code (the program text as typed by the author),
object code (the machine-language output of the compiler).

Common Application Service Elements (CASE) - The part of the protocol in the OSI
application layer that is common to all processes and interfaces with the presentation layer.

Common carrier - A supplier of communication services to the public, subject to regulation.

Compression - Transformation of data to reduce its size for storage or transmission, in a
way that allows it to be reconstituted to its original form. Common types of compression
are run-length encoding, Huffman encoding, and LZW encoding.

Connection-Oriented - Said of a protocol at any particular OSI layer in which there must be
a connection establishment phase, a data transfer phase, and a connection release phase,
and in which each message follows the path of previous messages during data transfer, so
that messages arrive at the end system in order.

Connectionless - Said of a protocol at a given OSI layer in which there is no connection
setup or teardown phase, and every message (frame, packet, etc) is independent from all
others, so that messages can arrive at the end system out of order.

Connector - A physical interface, a plug, of either male or female gender, providing contacts
for one or more wires within a cable, mating with a similar plug of opposite gender to
provide the desired electrical circuits.

Console - The primary input/output device with which a person controls a personal
computer or a timesharing session on a shared computer.

Contention - Multiple users competing for access to some shared resource, such as a
transmission medium, or the read/write head of a shared disk.

Control Character - A nonprintable character in a particular character code, for instance an
ASCII chararacter in the range 0 through 31 or ASCII character 127, contrasted with the
printable, or graphic, characters, like those in ASCII range 32 through 126.

Control Program - Another word for operating system.

CPU - Central Processing Unit

CR - Abbreviation for Carriage Return (ASCII 13, Control-M). Also, in transport protocols,
Connect Request.

CRC - Cyclic Redundancy Check, an error-detection technique in which all the bits in a
message are divided by a special "generating polynomial" and the remainder is appended to
the message.

CRLF - Abbreviation for Carriage Return, Linefeed, the sequence of ASCII characters
(numbers 13 and 10) used on many systems to delimit lines in a text file.

CRT - Cathod Ray Tube, a terminal screen, a video terminal.

CSMA/CD - Carrier Sense Multiple Access with Collision Detection, the medium access and
contention control method used with Ethernet.

Page 144 THE APPLICATION LAYER

CSU - Channel Service Unit. See DSU.

CTS - Clear To Send, the RS-232 signal that indicates readiness to accept data.

Cursor - The blob on your CRT screen that indicates the current character position.

Cyclic Redundancy Check - Bits calculated using binary polynomial division and added to a
message block by the sender, then recalculated by the receiver to detect (but not correct)
transmission errors.

Data - Information as it is stored in, or transmitted by, a computer or terminal. Plural of
Latin datum but in common use as an English collective (singular) noun.

Data compression (see compression)

Data encryption (see encryption)

Datagram - A message that travels through a multinode network independently of related
messages, possibly following different routes, with no assurrance of delivery in proper
sequence, or at all.

Datalink Layer - The network layer that provides error-correcting point-to-point trans-
mission.

Data Communication Equipment (DCE) - Devices whose only purpose is to connect Data
Terminal Equipment together: modems, multiplexers, etc.

Data Terminal Equipment (DTE) - Data processing devices: computers, terminals, and
printers, as opposed to Data Communication Equipment.

DCA - Document Content Architecture (IBM).

DCE - Data Communication Equipment, through which data terminal equipment (DTE) is
connected to each other, or to a network.

DDCMP - Digital Data Communications Message Protocol, a byte-count oriented datalink
protocol used by Digital Equipment Corporation.

DDM - Distributed Data Management (IBM).

DDN - Defense Data Network, another word for ARPANET.

Deadlock - A condition in which a pair of supposedly cooperating processes or devices are
blocked from operating because each is waiting for the other to complete some action.

DECnet - Digital Equipment Corporation’s networking product.

Dedicated Line - A communication line that is not dialed, i.e. that is always available,
dedicated to a connection between a particular pair of devices.

Delay - The amount of extra time spent waiting for an expected response. For instance, the
amount of time it takes for a message to be acknowledged.

Device Driver - A software component of a computer’s operating system that controls or

Understanding Data Communication Protocols and Software Page 145

services an input/output device, such as a UART or a disk controller, in real time, providing
a simple, buffered, time-independent interface to the application programmer.

DIA - Document Interchange Architecture (IBM).

Dialup - Establishment of a data communication circuit by dialing a telephone number.

Digital - Representation of data by discrete, rather than continuous, voltages or states.
Opposite of analog.

DIS - Draft International Standard (as in ISO/DIS).

DMA - Direct Memory Access, between input/output devices and the computer’s main
memory without assistance from the CPU.

DNA - Digital Equipment Corporation Networking Architecture.

DOS - Disk Operating System. An operating system that uses a magnetic disk as its
principle medium of permanent storage.

Download - Transfer data from a remote computer to a local one.

DSU - Data Service Unit. CSU/DSU combination serves in place of a modem when used
over digital leased lines (DDS).

DTE - Data Terminal Equipment.

DTR - Data Terminal Ready, the RS-232-C signal used by the DTE to tell the DCE that it is
operational.

Duplex - The degree to which a circuit permits two-way traffic. Half-duplex means traffic
can go either way, but only one way at a time; full-duplex means traffic can go both ways at
the same time.

Dynamic Routing - A type of routing in which each packet finds its way through a network
independently, so that packets can arrive misordered at the end system.

E-Mail - Electronic Mail.

EBCDIC - Extended Binary Coded Decimal Interchange Code. The character code used on
IBM mainframes.

Echo - The process by which a character typed at a terminal, or a device emulating a
terminal, is sent to the screen. Local echo means the terminal itself copies the character to
the screen; this is usually associated with half-duplex communication. Remote echo means
the system to which the character is transmitted sends it back to be displayed, possibly
modified.

Echoplex - Full duplex with remote echoing. Also, a technique for uploading files that uses
the remote echo for error detection and correction.

ECMA - European Computer Manufacturers Association, one of the standards bodies of
ISO.

Page 146 THE APPLICATION LAYER

EIA - The Electronic Industries Association. An organization of U.S. electronics
manufacturers. Issues standards in the area of data transmission, such as the RS-232,
RS-422, RS-423, and RS-449 standards. Some EIA standards are adopted by ANSI.

Encryption - Modification of data so as to make it unintelligible to anyone who does not
possess the encryption key.

ESC - ASCII character 27, Control-[.

Escape Character - A character used to get the attention of an otherwise transparent device
or program.

Escape Sequence - A sequence of characters opaque to an otherwise transparent device or
program, which causes it to enter conversational mode, or to take some other action. For
instance, the screen control sequences that are sent by a computer to a terminal to control
the appearance of the screen.

Ethernet - A bus-topology baseband local area network using CSMA/CD medium access,
originally developed by Xerox corporation.

FDX - Full-Duplex.

FEC - Forward Error Correction, a block check technique in which the receiver can not only
detect errors, but also correct certain kinds of errors using information supplied in the block
check.

FEP - Front End Processor.

FIFO - First-In-First-Out. A FIFO list is also called a queue. Items in the queue are
serviced and removed in the order in which they arrived. Queues are used in timesharing
systems for scheduling user jobs, and in networks for scheduling packets for transmission.

File - A named collection of data stored on a disk. A file group is a collection of files that
can be referred to using a single file specification.

File server - A network node dedicated to providing file storage and access to other nodes.

FIPS - Federal Information Processing Standard, issued by the US Government, developed
by the National Bureau of Standards, under the Dept of Commerce.

Fixed routing - A type of network routing in which there is only one predefined path from
one node to another.

Flag - A variable that can have two possible values, often implemented as a single bit, used
to control the behavior of a program, or to indicate the success or failure of an operation.

Flow Control - The process by which the flow of data in a particular direction is regulated
by the receiver so that the arrival of data is coordinated with the capacity of the receiver to
process it.

Forward Error Correction (FEC) - A frame check method that allows the receiver of the
frame not only to detect errors, but also correct them.

Frame - A datalink-level message, clearly delimited and containing a block for error

Understanding Data Communication Protocols and Software Page 147

detection.

Framing - The method used to delimit characters in asynchronous serial communications.
Each character is preceded by a start bit (space, 0) and followed by a stop bit (mark, 1),
with a continous marking condition indicating no transmission. Also, the method used to
delimit blocks of information (frames) at the datalink level.

Front End Processor - A communication processor for a host computer, which operates
independently from it but is closely tied to it. The front end relieves the host from the
burden of detailed control of multiple devices, and usually has direct access to the host’s
memory.

FTAM - File Transfer, Access and Management, an ISO application-level protocol, ISO/DIS
8571 (1986).

Full Duplex - A circuit that permits data transmission in both directions simultaneously.

Gateway - An interface between two different networks, capable of performing translations
at a particular level.

GGP - Gateway-to-gateway protocol.

GKS - Graphics Kernel System, a standard for the common representation of simple
2-dimensional images.

Half Duplex - A circuit that permits data transmission in both directions, but only in one
direction at a time.

Hamming Code - A forward error correction technique in which single-bit errors can be
corrected in any byte in a message.

Handshake - A method for granting permission to transmit, usually on a half duplex
channel ("line turnaround handshake").

HDLC - High Level Data Link Control, an ISO standard datalink protocol.

HDX - Half Duplex

Hexadecimal - Numeric notation in base 16, using the digits 0-9 and A-F to represent the
numbers 0-15, with each hexadecimal digit corresponding to four bits.

Host - A computer capable of providing services to users.

IEEE - Institute of Electrical and Electronics Engineers, an organization that, among other
things, issues standards involving local networks.

IFIP - International Federation of Information Processing.

Interface - Computer jargon for something that allows two otherwise incompatible
components to work together by satisfying their respective physical and logical require-
ments and making any necessary conversions of format, timing, voltage, etc. A connectors
and UARTs are examples of physical interfaces; a device driver is a software interface. The
aspect of a software program that interacts with a person is sometimes called the user
interface.

Page 148 THE APPLICATION LAYER

Internetwork Protocol (IP) - A protocol that allows packets to be routed through multiple
interconnected networks, typically implemented as the upper sublayer of the network layer,
and using connectionless (datagram) routing. IPs are defined for both ARPANET and OSI
network architectures.

Interrupt - In computing, an event that occurs at an unpredictable time, which a program
might take special action to service, after which it returns to what it was doing before.
Most device drivers and communication programs are "interrupt driven," allowing them to
respond rapidly (in "real time") to arriving data, even if they’re in the middle of doing
something else, like transmitting.

Interrupt Service Routine - A program in the computer’s memory that handles a particular
interrupt, e.g. the arrival of a character at the serial port. Typically does a very small task,
like copying a character from the device register to a memory buffer, then dismisses itself,
allowing the user-level software to continue operation where it left off.

Interrupt Vector - A table in the computer’s memory that tells it where to find the interrupt
service routine associated with each kind of interrupt.

IP - Internetwork Protocol.

ISDN - Integrated Services Digital Network, a CCITT project for standardization of a
network allowing voice, video, and data.

ISO - The International Organization for Standardization, a voluntary international group
of national standards organizations, including ANSI, that issues standards in all areas,
including computers and information processing, and whose technical committee also
maintains liaison with CCITT.

ISO/DIS - ISO Draft International Standard.

ISO DP - ISO Draft Proposal.

JTAM (or JTM) - Job Transfer and Manipulation, an evolving ISO standard for network
batch job submission (RJE).

Kernel - The most central part of a piece of software. For instance, the resident portion of
an operating system. Also called "nucleus".

LAN - Local Area Network.

LAP - Link Access Procedure, a datalink protocol used in X.25 networks.

LAPB - A "Balanced" variation of LAP, now preferred over LAP.

Layer - One level of a hierarchy of network functions or protocols.

Leased Line - A permanent, dedicated communication line rented from the telephone or
other company, usually used in conjunction with synchronous modems at speeds in the
2400-56000 baud range.

LEN - Low-Entry Networking (IBM).

Line - (1) A physical communication path, such as a telephone cable; (2) A computer’s

Understanding Data Communication Protocols and Software Page 149

interface to or designation for such a path; (3) a sequence of characters in a text file
intended to print on one line of a page or screen.

Line Turnaround - The amount of time it takes to switch the directionality of a half duplex
connection, or the mechanism used for doing so, such as XON handshake, RTS/CTS RS-232
signals, etc.

LLC - Logical Link Control - The upper sublayer of the IEEE 802 Ethernet datalink layer
(802.2).

Local Area Network - A data communication network allowing computing devices in a
building or on a campus to communicate, usually over a shared medium, at higher speeds
than are possible with telecommunications.

Local Echo - Immediate display on the local screen, by a local agent, of characters sent to a
remote computer. Associated with half-duplex communication.

Long Haul - Long distance, applied to connections, modems, or networks. Opposite of short
haul. Also, wide area (opposite of local area).

LU - Logical Unit, access port for users in IBM SNA networks.

LU 6.2 - IBM Logical Unit 6.2, an emerging standard for process-to-process network
communication.

MAC - Medium Access Control, the lower sublayer of the IEEE 802 datalink layer that
specifies how to access a shared transmission medium: Ethernet CSMA/CD (802.3), token
bus (802.4), token ring (802.5).

Machine - A computer.

Manchester Encoding - A binary encoding in which a bit is represented as a
positive/negative voltage transition rather than a constant voltage level, used on Ethernet.

MAP - General Motors Manufacturing Automation Protocol, an evolving implementation of
the 7-layer ISO OSI protocol suite.

Mark - (1) The voltage level used to express a binary 1 on a communication line; (2) A kind
of character parity in which the parity bit of all characters is set to 1.

Medium - That through which data is transmitted -- copper wire, coaxial cable, optical
fiber, empty space, etc -- or which it is stored upon -- magnetic disk, diskette, tape, etc.

Memory - The internal, volatile, high-speed, solid state storage of a computer, as
distinguished from external, permanent, lower speed, rotating mechanical memories (e.g.
disks, tapes) used for bulk storage.

Message - A unit of information, usually consisting of multiple bytes or characters, cast into
some specified format for transmission.

Message switching - Transfer of entire messages through a network, storing them in their
entirety at each node before relay to the next node. Also called store and forward.

Modem - Modulator/Demodulator, a device that converts between serial digital data as

Page 150 THE APPLICATION LAYER

output from a UART and analog waveforms suitable for transmission on a telephone line.

Modulation - In data communication, impressing data upon a carrier wave by changing its
amplitude, frequency, or phase.

Modulo - A maximum number to be used in counting, at which counting begins over again
at zero. Any number modulo n is the remainder after dividing that number by n.

MTBF - Mean Time Between Failures.

MTTR - Mean Time To Repair.

Multiprocessing - Said of a computer system that allows multiple processes to be active
simultaneously, by allocating small time slices to each one in some scheduled fashion, as in
timesharing.

NAK - (1) ASCII character 25, Control-U. (2) In communication protocols, a negative
acknowledgment, an indication that a message was not received correctly.

NAPLPS - North American Presentation Layer Protocol Syntax.

NAU - Network Addressable Unit (IBM).

NBS - National Bureau of Standards (US).

Network - A permanent arrangement allowing two or more computers or devices to
communicate with each other conveniently and reliably at high speeds, over dedicated
media, typically requiring special hardware and operating-system level software.

Network layer - In the ISO OSI reference model, the layer that is concerned with routing
packets through a network to their final destination. May also include a sublayer conerned
with routing messages between networks.

NFS - Network File System, a network file-sharing protocol developed by SUN Microsys-
tems.

Node - A device or computer on a network.

Noise - Interference on a communication medium that corrupts data during transmission.

Nucleus - The most central part of a piece of software. For instance, the resident portion of
an operating system. Also called "kernel".

Null Modem - A pair of connectors, possibly with a length of cable between them, allowing
two DTEs (computers or terminals) to be directly connected without intervening DCEs
(modems or multiplexers), supplying the required RS-232 signals by means of
cross-connections and jumpers. An asynchronous null modem consists only of wires and
connectors, a synchronous null modem also provides a clock signal.

Object code - Machine instructions, either directly executable by the computer, or requiring
relocation by a loader prior to execution. Compare with source code.

Octet - A group of 8 bits. Another word for 8-bit byte.

Understanding Data Communication Protocols and Software Page 151

Operating System - The software program that controls a computer at the most basic level,
consisting of a collection of device drivers, a scheduler, memory manager, etc. Operating
system functions, particularly device drivers, operate in real time, as distinguished from
user programs, which are scheduled and managed by the operating system, and which must
call upon the operating system to perform critical functions like device input/output.

OS - Operating System.

OSI - The Open System Interconnection reference model of the ISO.

Overhead - Information, such as control, timing, sequencing, routing, and error checking,
added to data during transmission. Also, the computer resources consumed processing this
extra information.

Overrun - The overwriting of data in a buffer with new data before the old data has been
retrieved for use, e.g. in a UART’s holding register, or a device driver’s buffer.

Pacing - Another word for flow control.

Packet - A message consisting of fields whose locations and interpretation are agreed upon
by the sending and receiving entities, to be transmitted (and possibly switched) as a whole,
and typically containing sequencing, routing, error checking, and other control information
as well as data.

Packet Switching - A technique, typically used in computer networks, to allow multiple
users and hosts to share the same set of transmission media by breaking their data up into
discrete packets, which may be intermixed and routed arbitrarily and still arrive at their
various destinations in sequence and intact.

PAD - Packet Assembler/Disassembler, a device connecting one or more terminals or
computers to a packet-switched network, providing conversion from the unguarded
asynchronous communication that occurs between itself and the terminal to
packet-switched communication between itself and the host selected by the user.

Padding - A method for allowing a receiving device to keep up with sustained transmission,
by including extra characters at critical points to tie up the transmission line while the
device is busy servicing the data received so far. For instance, certain kinds of printers
need padding after a carriage return character to give them time to move the printing head
back to the left margin. Used in lieu of full duplex flow control.

Parallel - All at once. In data communication, the transmission of all the bits in a byte (or
word) together, each on its own wire, usually done only over very short distances. Compare
with serial.

Parameter - A symbolic value, standing for, or to be replaced by, a real value.

Parity - An error detection method in which one bit is set aside to indicate some property of
the remaining bits in a byte or word. Usually, it is the number, modulo 2, of 1-bits in the
quantity. Odd parity means the parity bit is set to make the overall number of 1 bits odd,
Even makes the overall number of 1 bits even. Mark parity means the parity bit is always
set to 1, space parity means it’s always set to zero. No parity means the bit that would
otherwise be used for parity may be used for data.

PBX - Private Branch Exchange, a telephone system serving the internal needs of an

Page 152 THE APPLICATION LAYER

organization and providing connection to the external phone system. Often used for data
transmission as well as voice within the organization. May be digital or analog.

PC - (1) Personal Computer; (2) Program Counter (the address of the current program
instruction being executed by a computer); (3) Phase Corrector (in synchronous modems);
(4) Pacing Count (in SNA).

PDN - Public Data Network.

PDU - Protocol Data Unit: the data and control information associated with a particular
OSI protocol layer, e.g. a TDPU for the Transport layer.

P/F - The Poll/Final bit in HDLC and friends.

Physical Layer - The ISO OSI layer concerned with control of the communication device.

PLV - Parameter-Length-Value notation: a code specifying a parameter, followed by the
length of the parameter, and then a parameter value of the given length.

Point to Point - Said of a transmission path that is direct, with no intermediate routing
nodes involved, but possibly including transparent switches. For instance, a dialup phone
connection is point to point, but a packet-switched network connection is not.

Polling - The process of asking each terminal or node in a prearranged sequence whether it
has data to transmit.

Protocol - In data communication, a set of rules and formats for exchanging messages,
generally incorporating methods of sequencing, timing, error detection and correction.

PSDN - Packet Switched Data Network.

PTT - Public Telephone and Telegraph Administration (Europe).

PU - The Physical Unit, in IBM SNA networks, that manages the communication resources
at a given node.

PU 2.1 - The IBM Physical Unit associated with Logical Unit 6.2.

Public Data Network - A network, usually packet switched, providing access to the public
on a subscription basis to potentially widely scattered and diverse services.

Queue - A list in which the first element entered is the first removed. Also called a
First-In-First-Out (FIFO) list.

Real Time - Said of an environment in which events must be serviced promptly as they
occur, rather than queued for later service.

Remote Job Entry (RJE) - Entering batch jobs from a remote "terminal", usually consisting
of a card reader and line printer or device that emulates them.

Residual Error - An undetected transmission error.

Response Time - A measure of the interval between a stimulus and its response, for
instance how long it takes a character to echo on a full duplex channel.

Understanding Data Communication Protocols and Software Page 153

Retry - A second or subsequent attempt of the same operation, e.g. transmission of a
packet.

RFC - Request For Comments, the ARPANET equivalent of a standard, e.g. RFC793 is the
TCP standard.

RJE - Remote Job Entry.

Routing - The relaying of packets node-by-node through a network from the originating
system to their final destination.

RS-232-C - An EIA standard that gives the electrical and functional specification for serial
binary digital data transmission, the most commonly used interface between terminals (or
computers) and modems (or multiplexers).

RTS - Request To Send, one of the RS-232-C signals, typically used by a terminal or
computer to ask permission of a modem to transmit data to it.

SAA - IBM Systems Application Architecture, a specification of software applications,
communications protocols, and user interfaces, allowing applications coded accordingly to
be portable and interoperable among many different IBM and even non-IBM systems.

Satellite - In data communication, an object circling the earth in a relatively permanent,
often geostationary orbit (always above the same spot), relaying data between earth
stations (possibly through other satellites) usually via microwave, typically introducing
delays in response time because of the great distances and possibly contention involved.

SSCP - System Services Control Point (IBM)

SDLC - Synchronous Data Link Control, a datalink protocol associated with IBM’s System
Network Architecture (SNA), similar to HDLC, and, like HDLC, a subset of ADCCP.

SDU - Service Data Unit, in OSI protocols, the next-higher layer’s data, to be handled using
the current layer’s protocol.

Serial - In series, sequential, one after another. The dominant mode of transmission of
binary data over distances greater than a few feet. Compare with parallel.

Server - A program, or intelligent device, that provides specified services to users, or
"clients," in response to requests, usually over a communication line or network. Networks
often supply file servers, print servers, name servers, etc.

Session - The period during which a user engages in dialog with a computer or a particular
application.

Session Layer - The layer in the ISO OSI model which is responsible for communication
between end-user processes.

Signal-to-Noise Ratio - The relative power of a signal to noise in a communication channel,
measured in decibels (dB).

Signalled Error - A transmission error that is detected.

Simplex - Permitting data to travel in only one direction (like a radio broadcast).

Page 154 THE APPLICATION LAYER

Sliding Window - See Window.

SMTP - Simple Mail Transfer Protocol, the protocol used on the ARPANET and other
networks for transferring electronic mail between networked systems.

SNA - IBM System Network Architecture.

SNADS - SNA Distribution Services (IBM).

Socket - In ARPANET, the network address of a process or application within a host.

Software - Computer program(s).

SOH - Start-Of-Header, ASCII and EBCDIC character number 1, Control-A. Intended to
indicate the start of a packet or packet header.

Source Code - The text of a computer program as originally written by the programmer.

Source Routing - A kind of routing in which the user specifies each node in the path.

Space - (1) A binary 0 as represented on a transmission medium; (2) A blank, ASCII
character 32; (3) A kind of parity in which the parity bit is always 0.

Splitting - Transmission of messages belonging to a particular layer over multiple
next-lower-layer connections.

Star Network - A network in which each node is connected directly to a central hub.

Start Bit - In asynchronous serial transmission, the space (0-bit) that indicates that a
character is starting to arrive, after one or more bit times of mark (1-bit) condition.

Stop Bit - In asynchronous serial transmission, the mark (1-bit) that terminates a
character. It lasts for at least one bit time, and thereafter until the next character starts to
arrive.

Store and Forward - See Message Switching.

Subnetwork - A subset of the layers of a network, usually the lower three (physical,
datalink, network).

Sync (or SYN) - A bit pattern used by a synchronous line controller to achieve byte
synchronization.

Synchronous - Having a constant time interval between successive bits or characters. A
method of data communication in which characters (or arbitrary bit streams) may be
transmitted without framing information (start and stop bits) to achieve greater through-
put than possible with asynchronous communication, by using of out-of-band timing
signals, but also requiring occasional resynchronization by means of in-band sync
characters.

System - (1) A way of doing things; (2) A computer.

T1 - A digital long-haul medium capable of transmitting 1.544Mbps, typically multiplexed
into 56Kbps or 64Kbps channels, originally used as telephone trunk lines, now seeing

Understanding Data Communication Protocols and Software Page 155

increasing use for data transmission.

TCAM - IBM mainframe Telecommunications Access Method, a device driver for
asynchronous terminals.

TCP - Transmission Control Protocol, the Transport layer of the ARPANET protocol suite.

TDM - Time Division Multiplexing.

TDMA - Time Division Multiple Access.

Telecommunications - Asynchronous serial data communication, possibly (but not neces-
sarily) involving dialup telephone connections and modems.

Telenet - A public packet switched network service.

Telnet - The Arpanet virtual terminal protocol, not be confused with Telenet.

Terminal - A device allowing a person to interact with a computer, with the person typing
characters on a keyboard to send them to the computer, and with the computer’s responses
appearing on a screen or paper. Sometimes includes the ability to interpret special
character sequences to accomplish screen formatting, but in general differing from a
computer by not having local permanent memory or general-purpose programmability.
Most terminals are ASCII, asynchronous, and character-oriented, but there are also other
kinds, for example the IBM EBCDIC block mode 3270 series.

Terminal Emulation - Behaving like a terminal. Said of software that runs on PCs or other
computers, which sends the user’s typein out the serial port, and sends the port input to the
screen. Sometimes includes the ability to interpret the same special command sequences
(e.g. for screen formatting) that a specific real terminal would obey.

Terminal Server - A network device allowing ordinary terminals with no networking
capabilities of their own to participate in a network, provided hosts share a common
protocol with the terminal server.

Text - Computer data intended for a person to read, or typed by a person, consisting of only
printable characters and those control characters necessary for format control (carriage
return, linefeed, tab, etc). Text files can be transferred between unlike systems and still
remain useful. Compare with binary file.

Throughput - A measure of how much data passes through a particular point per unit time.

Timeout - The process by which a program wakes up after waiting for some expected event
(like input from a device) longer than a predetermined amount of time.

Timesharing - A style of computing in which multiple users simultaneously interact with
the same computer, under scheduling control of the computer’s operating system.

Token - A medium access technique used on local area networks, in which a "token" is
passed from node to node, and only the node with the token is allowed to transmit. Suited
to bus or ring topologies.

TOP - Boeing Technical and Office Protocol, an evolving implementation of the 7-layer ISO
OSI protocol suite.

Page 156 THE APPLICATION LAYER

Topology - The layout nodes and physical connections in a network.

TPDU - Transport Protocol Data Unit.

Translation Table - A list of the numeric representations of characters in a given character
set. The position in the list is the numeric value of a character in the set being translated
from, the number located at that position is the value to be translated to. Also called
translate table.

Transparent - Allowing data to pass through unmodified.

Transport Layer - The network layer responsible for end-to-end control of transmitted data.

TTY - Originally, Teletypewriter. Currently, any asynchronous ASCII terminal or
computer that emulates one.

Turnaround - (1) Response Time; (2) Line Turnaround, i.e. the granting of permission to
transmit on a half duplex connection.

TWA - Two-Way-Alternate, same as half duplex.

Twisted Pair - Pairs of insulated copper wire, 20-28 AWG, twisted around each other in
helix fashion within an outer sleeve to minimize crosstalk interference during data
transmission.

TWS - Two-Way-Simultaneous, same as full duplex.

Tymnet - A public packet switched network service.

Typeahead - The ability to send characters to a computer or device before it has requested
them, possible only on full-duplex connections.

UART - Universal Asynchronous Receiver/Transmitter, the device that converts between
parallel character data as stored in a computer’s memory and asynchronous serial binary
data as transmitted on a telecommunication line.

USART - Universal Synchronous/Asynchronous Receiver/Transmitter, like UART, but also
handles synchronous communication.

USRT - Like UART, but only does synchronous.

Unattended - Referring to an operation that can proceed automatically, without human
intervention.

Unbalanced - Said of an HDLC-like datalink protocol in which one station may transmit
only commands and the other only responses. Opposite of Balanced. Also said of a
transmission medium, like RS-232, in which all signals are measured against a common
ground reference.

Unguarded - Said of data transmission in which no method of error detection and correction
is employed.

Upload - Transfer data from the local computer to a remote computer.

Understanding Data Communication Protocols and Software Page 157

User Program - A program that runs outside of the operating system’s environment, whose
scheduling is controlled by the operating system, and which must call upon the operating
system to perform time-critical or privileged services.

V.24 - CCITT version of RS-232-C.

Virtual - Behaving as if it were a real (1) terminal, (2) circuit, (3) disk, (4) machine, ...

Virtual Circuit - A transmission path set up dynamically end-to-end, possibly shared by
more than one user, with packets constrained to arrive in the same order in which they
were sent, with no duplications or gaps.

Virtual Terminal - A common intermediate representation for a terminal and its control
sequences and functions. Not the same as terminal emulation. The ARPANET TELNET
protocol is a virtual terminal protocol. ISO/DIS 9040, Virtual Terminal Service, is another.

Voice Grade - Said of a telephone connection, either dialed or leased, intended for carrying
voice rather than digital traffic; usually noisier, and with less bandwidth, than a digital or
specially conditioned line.

VT100 - An asynchronous ASCII video terminal made by DEC and widely imitated. Uses
the ANSI standard control sequences specified in ANSI X3.64-1978 and X3.41-1974. The
VT100 is the basis for many later DEC models (VT102, etc, and the VT200 series), and for
many PC terminal emulation programs.

VTAM - IBM mainframe Virtual Telecommunications Access Method; a device driver for
asynchronous terminals and for network virtual terminals.

Window - The number of frames or packets that can be sent before requiring acknowl-
edgement.

Word - A unit of storage in a computer’s memory, usually the one used for numbers and
addresses, directly addressable by the computer.

X.3 - A CCITT standard listing the functions of a PAD in a public data network.

X.21 - A CCITT standard for a synchronous physical layer for a public data network.
X.21bis allows for asynchronous (e.g. RS-232) connections.

X.25 - A CCITT network-layer standard, the basis of many public packet-switched
networks, included Telenet, Tymnet, Datapac, Transpac, Datex-P, etc etc.

X.28 - A CCITT recommendation that lists the commands that can be issued from a
terminal to a PAD.

X.29 - A CCITT specification of the protocol between a PAD and a packet-mode host.

X.75 - A CCITT standard for interconnection of X.25 networks.

X.121 - A CCITT standard for network addressing.

X.200 - The CCITT version of the ISO OSI definition.

X.400 - A CCITT series of recommendations for Message Handling Systems (Electronic

Page 158 THE APPLICATION LAYER

Mail).

XID - Exchange Identification, an operation in HDLC-like datalink protocols allowing the
two partners to configure themselves to one another by telling each other what capabilities
they possess, and their receive-window size.

Xmodem - Asynchronous file transfer protocol based on the Ward Christensen protocol,
MODEM, intended for use between microcomputers, widely found in commercial PC
communication programs.

XNS - Xerox Network Systems

XON/XOFF - The most common in-band full duplex flow control method, in which the
receiver sends an XOFF character when its input buffer is close to filling up, and an XOFF
when it has made room for more data to arrive.

Understanding Data Communication Protocols and Software Page i

Table of Contents
1. INTRODUCTION 3
2. COMPUTER NETWORKS 27
3. THE PHYSICAL LAYER 47
4. THE ISO DATALINK LAYER 67
5. OSI LAYER 3 - THE NETWORK LAYER 87
6. OSI LAYER 4 - THE TRANSPORT LAYER 103
7. THE SESSION LAYER 119
8. THE PRESENTATION LAYER 125
9. THE APPLICATION LAYER 127

